High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

D. G. Lancaster, D. Richter, R. F. Curl, and F. K. Tittel
Rice Quantum Institute, Rice University, Houston, Texas 77005

L. Goldberg and J. Koplow
Optical Sciences Division, Naval Research Laboratory, Washington, D.C. 20375-5672

Received August 2, 1999

We report the generation of up to 0.7 mW of narrow-linewidth (<60-MHz) radiation at 3.3 μm by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-μm diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO₃. A conversion efficiency of 0.09%/W (0.47 mW W⁻² cm⁻¹) was achieved. A room-air CH₄ spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of ±2.8 × 10⁻⁹ (±1σ), corresponding to a sub-parts-in-10⁹ (ppb) CH₄ sensitivity (0.8 ppb). © 1999 Optical Society of America

Optical Sciences Division, Naval Research Laboratory, Washington, D.C. 20375-5672

We report the generation of up to 0.7 mW of mid-IR power in a fiber wavelength-division multiplexer for pump-beam combination into a single fiber. These sensors include an 11-μm DFG system in which the pump beams were amplified by an in-line diode-pumped Yb amplifier and a passive Er/Yb codoped fiber amplifier. A portable widely tunable sensor (3.3–4.3 μm) based on a diode-seeded Yb amplifier and an 8.14–870-nm external-cavity diode-laser system that produces ~3 μW was described in Ref. 8.

In this Letter we report a potentially compact and efficient all-solid-state system with fiber-optic coupling that generates up to 0.7 mW of mid-IR power in a diffraction-limited beam. The measured bandwidth is <60 MHz, and we have demonstrated sensitive dual-beam spectroscopy of CH₄ in an 80-m Herriot cell.

A schematic of the DFG experimental configuration is shown in Fig. 1. The mid-IR source is based on low-power laser sources at 1 and 1.5 μm, which seed 1.5-W Yb and 0.6-W Er/Yb fiber amplifiers, respectively. One seed source for this experiment was a cw 1.064-μm Nd:YAG laser that was used to simulate a diode laser emitting near this wavelength (e.g., a 1083-nm distributed Bragg reflector diode laser). We coupled 20 mW of its output into a single-mode fiber to seed the Yb amplifier after it passed through a 45°-dB optoisolator. The backward-propagating light from the 1064-nm Yb amplifier was monitored for evidence of power instabilities owing to stimulated Brillouin scattering (SBS) and Rayleigh scattering. This was accomplished by use of a fused-silica wedge placed at 45° in the beam path, which directed 9% of the light to a Si photodiode (~50 ns). A 2-mW fiber pigtailed 1.560-μm distributed-feedback telecommunication diode laser with ~80 dB of in-line optical isolation was used as the second seed source. To minimize backreflections to the high-gain amplifiers and prevent formation of optical etalons, we ensured that all optical fiber terminations that were used in the sensor were terminated with connectors that had their ends...
cross-section cladding by a V-groove configuration. 4-W diode lasers coupled into the outer hexagonal double-clad fibers that are pumped by single 975-nm phase matching.

linear vertical polarization states required for quasi-polarization controllers on each input fiber to set the

2

f

off-axis

1

an area of

with 3-dB bandwidths of 200 kHz. Each detector had photoconductive mode and dc coupled to preamplifiers (data channel). The MCT detectors were operated in a

80 m before being directed onto a second MCT detector astigmatic Herriot cell configured for a path length of

tor. The remaining radiation was directed through an

was focused onto the HgCdTe (MCT) reference detec-

ments was provided by the front surface's 29% reflec-

A reference beam for dual-beam spectroscopic measure-

±

at 45

was taken over 100 averages at a 0.1-kHz scan rate. The Doppler linewidth of CH

4

was then deconvolved from the acquired spectra to give a DFG linewidth of 0.4 Torr of CH

2

lines and the

12

PPLN crystal, resulting in estimated beam spot diame-

m

m

m beams of 63 and 89

m, respectively. The PPLN crystal, which contained nine quasi-phase-matched channels with periods ranging

from 29.7 to 30.5

m in 0.1-

m increments, was mounted on a Peltier element for temperature control and antireflection coated for the pump, signal, and idler wavelengths. The DFG beam was collimated by an

f = 5 cm CaF

2 plano–convex lens and the residual pump light removed by an antireflection-coated Ge filter.

We used a calibrated thermopile detector to alternately measure the incident pump and DFG powers. A reference beam for dual-beam spectroscopic measurements was provided by the front surface's 29% reflection from an uncoated ZnSe wedge placed in the beam at 45°. The reference beam was then directed to an off-axis

f = 3 cm parabolic mirror, where the radiation was focused onto the HgCdTe (MCT) reference detector. The remaining radiation was directed through an astigmatic Herriot cell configured for a path length of 80 m before being directed onto a second MCT detector (data channel). The MCT detectors were operated in a photoconductive mode and dc coupled to preamplifiers with 3-dB bandwidths of 200 kHz. Each detector had an area of 1 mm² and was operated at a temperature of −65 °C by use of integrated three-stage Peltier cooling elements.

The data for spectroscopic measurements were recorded by two separate 16-bit analog–digital cards sampling in parallel at 100 kHz and interfaced to a laptop Pentium II PC running Labview (National Instruments) and Windows98. A beam shutter after the Ge filter allowed the dark voltage of each detector to be measured. We normalized the acquired data to transmission by taking the natural logarithm of the ratio of each detector voltage less the detector dark voltage. Any nonlinearity between the detectors or residual low-frequency optical fringes were removed by subtraction of a polynomial function fitted to the spectrum baseline. We then obtained a normalized transmission spectrum by taking the exponential.

In Fig. 2, a conversion efficiency of 0.89 mW W⁻² (0.47 mW W⁻² cm⁻¹) is shown with a maximum power of 0.7 mW generated for the 19-mm-long PPLN crystal. Our measured slope efficiency compares reasonably with the theoretically expected conversion efficiency of 0.76 mW W⁻² cm⁻¹. The plotted powers were corrected for losses from optical surfaces (uncorrected power, 0.55 mW). Phase matching was obtained with the 30.1-µm grating period at a temperature of 45 °C. To measure the time-averaged linewidth of the DFG radiation we recorded the Doppler-broadened spectrum of 0.4 Torr of CH

4 in a 3-cm-long cell, as shown in Fig. 3 (Doppler-broadened FWHM of CH

4 is 276 MHz). This measurement was taken over 100 averages at a 0.1-kHz scan rate. The Doppler linewidth of CH

4 was then deconvolved from the acquired spectra to give a DFG linewidth measurement of <60 MHz (assumed to be Gaussian).

A spectrum of room air acquired over a 0.8-cm⁻¹ scan range is shown in Fig. 4, which covers two H

2 O lines and the 12CH

4 P(3) ν3 rovibrational lines. This spectrum was taken at a reduced pressure of 88 Torr in an 80-m path-length Herriot cell. We calculated a molecular concentration of 2021 ± 21 parts in 10⁶ (ppb)
CH$_4$ in air by fitting a Voigt line shape to each CH$_4$ peak and compared the resulting integrated line-shape areas with those obtained from a cylinder of calibrated air containing 1772.7-ppb CH$_4$. The ±21 ppb error is attributable to the difficulty in estimating the background value for each CH$_4$ absorption line fitted, due to the overlap of the five primary absorption peaks and three weaker peaks. The inset of Fig. 4 shows a reduced-frequency range spectrum of a low CH$_4$ concentration (~87 ppb of CH$_4$ in nitrogen). This spectrum was acquired to display the $P(3)$ rovibrational lines and baseline noise on the same scale as well as to reduce the effect of pressure broadening on the line shapes. The baseline noise has a ±1σ magnitude of ±2.8 × 10$^{-5}$, which we attribute to detector–preamplifier 1/f noise, thereby implying a normalized detection sensitivity of 4.0 × 10$^{-6}$ Hz$^{-1/2}$ and an estimated CH$_4$ detection sensitivity of 4.3 ppb m Hz$^{-1/2}$.

During initial characterization of the sensor, a spiking behavior in the 1-μm pump power was observed. We attributed this behavior to a combination of SBS and Rayleigh scattering occurring in the pump-beam delivery fiber, which produced backward-propagating pulses that were subsequently amplified in the high-gain Yb amplifier, thereby leading to power instability. To eliminate the SBS effects in the fiber we shortened the delivery fiber from 7 to 1.5 m, which increased the calculated threshold for SBS from 1.6 to 7.3 W, assuming a 5.7-μm field diameter in the fiber. Future work will focus on the use of dual-beam wavelength modulation spectroscopy to improve sensitivity and sensor optimization to permit long-term monitoring of low-concentration gases such as CH$_4$ and H$_2$CO.

In summary, DFG radiation of up to 0.7 mW at 3.3 μm is reported with a measured bandwidth of <60 MHz. A minimum absorption of ±2.8 × 10$^{-5}$ with dual-beam absorption spectroscopy was achieved. This work demonstrates a significant increase in both power and sensitivity over previously reported DFG-based spectroscopic sources and thereby will open up new gas detection applications.

This research was supported by NASA, the Texas Advanced Technology Program, the Welch Foundation, the National Science Foundation, and the U.S. Office of Naval Research. T. K. Tittel's e-mail address is tkt@rice.edu.

References