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Abstract: We report on the design, realization, and performance of novel quartz tuning forks 
(QTFs) optimized for quartz-enhanced photoacoustic spectroscopy (QEPAS). Starting from a 
QTF geometry designed to provide a fundamental flexural in-plane vibrational mode 
resonance frequency of ~16 kHz, with a quality factor of 15,000 at atmospheric pressure, two 
novel geometries have been realized: a QTF with T-shaped prongs and a QTF with prongs 
having rectangular grooves carved on both surface sides. The QTF with grooves showed the 
lowest electrical resistance, while the T-shaped prongs QTF provided the best photoacoustic 
response in terms of signal-to-noise ratio (SNR). When acoustically coupled with a pair of 
micro-resonator tubes, the T-shaped QTF provides a SNR enhancement of a factor of 60 with 
respect to the bare QTF, which represents a record value for mid-infrared QEPAS sensing. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Optical techniques operating in the mid-infrared spectral regions are capable of excellent 
trace gas sensing performances, together with high sensitivity and selectivity [1,2] due to the 
presence of strong ro-vibrational absorption bands of many molecules. Photoacoustic 
spectroscopy (PAS) is a sensing technique that does not require the use of an optical detector 
and troublesome optical alignments, but nevertheless is capable of performing trace gas 
measurements at sub-parts-per-trillion concentration levels [3,4]. PAS is based on the 
detection of sound waves generated by gas absorption of modulated optical radiation. Quartz 
tuning forks (QTFs) have shown a great potential as sound transducers, leading to a well-
established variant of PAS, named quartz-enhanced photoacoustic spectroscopy (QEPAS) [5]. 
The confinement of the acoustic energy between the prongs of the QTF, combined with high 
quality factors, enabled the detection of weak photoacoustic excitation within very small gas 
volumes. Since its introduction in 2002, standard low-cost QTFs with resonance frequencies 
at 32.7 kHz are typically employed in QEPAS sensors [6]. The QTF is typically coupled with 
a pair of tubes, acting as an organ pipe resonator to probe the sound wave [7,8]. The acoustic 
detection module composed of the QTF and micro-resonator tubes constitutes the QEPAS 
spectrophone, which is the core of any QEPAS sensor. In QEPAS sensing, the light source is 
focused between QTF prongs and sound waves produced by the modulated absorption of the 
gas are generated between the QTF prongs, forcing them to oscillate back and forth (in-plane 
anti-symmetrical modes). The main problem in the realization of a standard QEPAS sensor is 
the focalization of the laser beam within the 300 μm-gap between the standard QTF prongs 
without touching both micro-resonator tubes and the QTF. This is crucial in order to avoid the 
generation of a photo-thermal noise contribution which would be added to the piezoelectric 
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signal [9]. When laser modulation occurs at one of resonance frequencies of in-plane 
piezoelectrically active modes, the induced strain field generates surface electric charges 
proportional to the intensity of the sound waves incident on the QTF prongs. When the light 
is periodically absorbed by the gas, the energy excess is mainly dissipated through non-
radiative relaxation processes, involving vibrational and rotational excited states. Sound 
waves are then generated via energy transfer from excited states to translational degrees of 
freedom. The ability of the gas target to periodically relax the excess of energy depends on 
the modulation frequency (i.e. the resonance frequency of the QTF in-plane mode) of the 
incident laser radiation and differs for each gas [10,11]. With respect to the standard PAS, 
QEPAS operates at higher resonance frequencies. For slow relaxing gases, such as CO, CO2 
and NO a QEPAS sensor operational frequency as high as 32.7 kHz, like in standard QTFs, 
can limit the sound wave generation efficiency [12]. These considerations suggested 
directions for the realization of improved QTFs: i) reduction of the QTF fundamental 
frequency, ii) increase the prongs spacing in order to facilitate the optical alignments and 
minimize the photo-thermal noise level. Starting in 2013, custom QTFs have been realized in 
QEPAS sensors following these two guidelines [13]. Larger prongs spacing led to the use of 
the QEPAS technique with laser sources having a poor spatial beam quality as well as 
operating in the terahertz spectral range [13,14]. The implementation of a single-tube as 
acoustic micro-resonator system is another achievement [15]. Lowering the fundamental 
frequency also opened the way to the use of first overtone mode in QEPAS sensing [16,17], 
leading to a double-antinode QEPAS configuration [18] and simultaneous dual-gas detection 
by exciting with two laser sources both the fundamental and first overtone QTF flexural 
modes, simultaneously [19]. However, guidelines for QTFs optimized for QEPAS operation 
are still not well defined. 

This paper reports an investigation of the influence of prong sizes on both the resonance 
frequency and on the quality factor of the fundamental flexural mode, leading to the design of 
a quartz tuning fork optimized for QEPAS sensing. Starting from this design, two novel 
geometries were proposed: one with T-shaped prongs to optimize the strain field between the 
prongs and their support and the other one having prongs with grooves carved on the central 
sides in order to reduce the QTF electrical resistance. After determining the resonance 
properties, the investigated QTF samples were implemented in a QEPAS setup to test their 
photoacoustic response. The QTF providing the best performance in terms of signal-to-noise 
ratio (SNR) was acoustically coupled with a dual-tube micro-resonator system. The influence 
of the geometrical parameters on the photoacoustic response, namely the internal diameter 
and the length of the two tubes together with the spacing between the tube and the QTF, was 
also investigated to determine the optimal micro-resonator geometry. 

2. Guidelines for the design of quartz tuning forks 

The photoacoustic signal is proportional to the product Q·P·α, where Q is the QTF resonance 
quality factor, α is the gas target absorption coefficient and P is the laser power [17]. The 
straightforward approach to design QTFs optimized for QEPAS sensing is to reduce the 
resonance frequency while keeping high the quality factor. The dependence of the resonance 
frequency and related quality factor on the QTF relevant dimensions has been investigated in 
[20], where a set of QTFs with different values of spacing between the prongs and their sizes 
was analyzed. This study showed that resonance frequencies of in-plane flexural modes can 
be well predicted by using the Euler-Bernoulli equation. Considerations about the quality 
factor are more challenging. The Q-factor depends on all the energy dissipation mechanisms 
occurring in a vibrating prong of a QTF. The main contributions are due to damping by the 
surrounding fluid, the interaction of the prong with its support and thermo-elastic damping 
[21]. All these loss mechanisms strongly depend on the QTF prongs size. Although several 
theoretical models have been proposed to describe the dependence of each loss mechanism on 
the prongs geometry [22–24], there is no theoretical model capable to take into account all the 
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dissipation mechanisms in one, consistent formulation. An experimental investigation 
described in [21] on the QTF fundamental flexural mode resonance at atmospheric pressure 
demonstrates that the overall quality factor can be phenomenologically related to the prong 
sizes by: 

 53.78 10
wT

Q
L

= ⋅  (1) 

where w, T and L are the crystal thickness, the prongs width and the prongs length, 
respectively, all expressed in mm-units. This relation suggests that the overall quality factor 
of the fundamental mode can be increased by reducing the prong length and increasing both 
thickness and crystal width. Conversely, according to Euler-Bernoulli model, the resonance 
frequency of the fundamental flexural mode increases as the ratio between the prong 
thickness and its squared length [20]. When the crystal thickness is fixed, the quality factor 
scales linearly as the ratio T/L and Eq. (1) becomes Q = 9.45·104 T/L, for w = 0.25 mm, at 
atmospheric pressure. A MATLAB-based software was realized to relate the quality factor 
and the resonance frequency at different prong geometries. For each fixed prong geometry (T, 
L), the software calculates the resonance frequency and the related Q-factor, and plots ordered 
points on the x- (frequencies, f) and y- (Q-factors) axis of the coordinate plane. By ranging L 
from 3 mm to 20 mm and T from 0.2 mm to 3.0 mm, while keeping w at a fixed value of 0.25 
mm, the calculated ordered points (Q, f) are shown in Fig. 1. 

 

Fig. 1. Q-factor values plotted as a function of the resonance frequency for different prong 
lengths and thicknesses of quartz tuning fork of crystal width w = 0.25 mm, at atmospheric 
pressure. 

The graph clearly shows that for a selected resonance frequency, different prong sizes can 
be chosen, providing quality factors values spanning in a certain range. Moving to low 
resonance frequencies, this range of possible quality factor values, as well as the Q-factor 
values itself, is reduced. In particular, QTFs with a resonance frequency lower than 10 kHz 
cannot ensure a Q-factor higher than 15,000, at atmospheric pressure. For a novel generation 
of QTFs optimized for QEPAS operation, a resonance frequency of ~16 kHz (a half of the 
standard 32.7 kHz) was selected. At f = 16 kHz, L and T values (with w = 0.25 mm) 
maximizing the quality factor (18,000) are 9.4 mm and 2.0 mm, respectively. In a first step, 
starting with this prong geometry we designed two QTFs differing only in the prong spacing: 
QTF-S08 having a prong spacing of 0.8 mm, and QTF-S15 with a prong spacing of 1.5 mm. 
With all other geometrical parameters being identical, a comparison between them in terms of 
QEPAS performance will allow establishing the influence of the prong spacing on the QTF 
frequency and Q-factor, as well as on the amount of radiation incident on the prong surface, 
which typical affects the QEPAS sensor noise level. 
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the Euler-Bernoulli model and the empirical dependence of the quality factor with prong 
width/length ratio is an efficient tool for the prediction of the quality factor values. Even if the 
resonance frequency of both QTF-S08 and QTF-S15 is almost a half of the standard 32.7 
kHz-QTF, higher quality factors were measured. QTF-S08-G showed a resonance frequency 
about 4% lower than QTF-S08. Although the Euler-Bernoulli model does not predict a 
dependence of the resonance frequency on the crystal thickness w, 50 μm-grooves carving on 
both surface slightly affects the rectangular geometry of the prong and produces a small shift 
of the resonance frequency. For QTF-S08-T, a lower resonance frequency was measured with 
respect to QTF-S08 and QTF-S15, as predicted by COMSOL simulations, due to the non-
uniformity of the moments of inertia along the prong section. For QTF-S08-T, a quality factor 
of 15,260 was measured. Although the prong T-geometry leads to a decrease of the prong 
width from 2 mm to 1.4 mm starting from 2.4 mm far from prong top, the quality factor was 
not affected. A comparison of the QTF#2 with the new generation QTFs shows that the latter 
exhibits higher quality factors and higher resonance frequencies, in agreement with the 
calculation shown in Fig. 1. A more interesting comparison can be performed when 
considering QTF#1 operating at the first overtone mode. QTF#1 has the fundamental flexural 
mode at 2.87 kHz with a quality factor of ~ 5,000 and the first overtone mode at 17.8 kHz 
with a quality factor as high as ~ 14,890. Therefore, by moving from the fundamental to the 
overtone mode leads to an increase of the resonance quality factor. This behavior can be 
explained by considering that air damping is strongly reduced when the resonance frequency 
increases [29] and support losses start to dominate when overtone modes are excited [30]. 
The new generation QTFs reached the same Q-factor values range of QTF#1 when they 
vibrate at the fundamental mode and this is useful in terms of QEPAS performance. T-
shaping the prongs does not affect the electrical resistance, being nearly identical the 
electrical resistance measured for QTF-S08 and QTF-S08-T. While, a comparison of QTF-
S08 and QTF-S08-G, clearly demonstrates that adding grooves on the prongs surfaces 
reduces the electrical resistance from 162.9 kΩ (QTF-S08) to 104.3 kΩ (QTF-S08-G), while 
Q-factor and resonance frequency are only slightly affected and thereby providing an 
improvement in terms of the QEPAS performance. 

4. Photoacoustic response 

To verify all assumptions, we employed all QTFs in the QEPAS setup, depicted in Fig. 4(b). 
A single-mode continuous-wave quantum cascade laser (QCL) was used as the excitation 
source to generate photoacoustic signals. The QCL targeted a water vapor absorption line 
falling at 1297.19 cm−1, having intensity of 3.6·10−22 cm/molecule [31]. The laser beam was 
focused between the QTF prongs using a ZnSe lens with a focal length of 50 mm. An 
aluminum enclosure equipped with two mid-IR AR-coated windows was realized in order to 
accommodate and easily switch the QTFs. The housing was filled by standard air with a fixed 
1.7% water vapor concentration at atmospheric pressure. The QEPAS sensor operated with a 
wavelength modulation and dual-frequency detection approach, i.e. the laser beam is 
wavelength-modulated at a half of the selected resonance frequency while the lock-in 
amplifier demodulates the QTF signal at the resonance frequency. The absorption line is 
acquired by applying a slow ramp to the current driver allowing a linear wavelength-scan. As 
a first step, the vertical position of the laser beam focus along the QTF axis (as shown in Fig. 
6(a)) has to be optimized in terms of the QEPAS signal. To study the dependence of the 
QEPAS signal intensity (proportional to the total momentum generated by the pressure wave) 
as a function of the vertical position of the laser beam, the laser beam focus was moved from 
the top to the bottom along the QTF axis between the two prongs. 
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prongs should be related with the geometrical properties of both acoustic resonators. Hence, 
the experimental results achieved in this work can be also used as a basis for theoretical and 
computational approaches (for example, finite element method analysis), mandatory for a 
precise prediction of an acoustic detection module performance. 
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