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Calculation model of dense spot pattern multi-
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We report a novel calculation model for dense spot pattern
multi-pass cells consisting of two common identical spheri-
cal mirrors. A modified ABCD matrix without the paraxial
approximation was developed to describe the ray propaga-
tion between two spherical mirrors and the reflection on the
mirror surfaces. The intrinsic aberration from the spherical
curvature creates a set of intricate variants with respect to a
standard Herriot circle spot pattern. A series of detailed
numerical simulations are implemented to verify that the
input and output beams remain the same and, hence, re-
trace the same ray pattern. The set of exotic spot patterns
obtained with a high fill factor improves the utilization ef-
ficiency of the mirror surfaces and produces a longer total
optical path length with a low mirror cost.  ©2019 Optical
Society of America

https://doi.org/10.1364/0OL.44.001108

Multi-pass cells (MPCs) with a long effective optical path
length constructed with highly reflective mirrors are widely
used in optical absorption spectroscopy and gas-phase optical
delay lines for the detection of trace amounts of gas molecules
[1-7]. Early spherical MPCs developed by White [8] and
Herriot [9] are still in use in a laser-based spectroscopic trace
gas sensor due to their simplicity, reliability robustness, and op-
erability [10,11]. In order to improve the utilization efficiency
of mirror surfaces and, hence, obtain a longer optical path
length, Herriot described astigmatic MPCs in which the x—z
and y—z planes of spherical mirror have different focal lengths,
thus creating Lissajous spot patterns. As a result, this increases
the number of the ray reflection in a MPC, while minimizing
the spot overlap [12]. Recently, many variants based on the as-
tigmatic MPCs were reported with a similar high fill factor pat-
tern, in which at least one spherical mirror was replaced with a
cylindrical mirror [13,14]. In 2017, Ozharar et al. [15] de-
signed an aspherical mirror whose focal length varies inversely
as the ray height from the optical axis. With an appropriate
incident angle and position of a ray, a rich set of dense patterns
was achieved.
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However, so far, MPCs with the most dense patterns are
based on aspherical mirrors. In practice, mirrors with high
surface accuracy are manufactured by grinding and polishing
techniques that naturally produce spherical surfaces. The
manufacture of aspheric surfaces is more complex, and it is dif-
ficult to produce a mirror of sufficient surface accuracy to fol-
low the designed pattern. Therefore, spherical mirrors are
required in these MPCs due to the simplicity, more easily con-
trolled surface quality, and more importantly lower cost.

As shown in Fig. 1, the incident ray transmits between two
mirrors (M1 and M2) and then reflects on the M2 surface to
complete a pass count in the simple structure of a two-spheri-
cal-mirror MPC. With conventional calculations of ray tracing
analysis, the paraxial theory was used with two assumptions:
(1) the optical path lengths of any rays between two mirrors,
d,, are constant, D, where 7 is the pass count; and (2) all the
rays make small angles to the optic axial of the system, so that
three important angle approximations are valid, i.e., sin 6 = 6,
tan 0 = 6, and cos 0 =~ 1. However, with more highly curved
surfaces, particularly marginal rays, and more pass counts, the
paraxial theory generates increasingly large deviations from the
actual performance due to spherical aberrations. For example,
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Fig. 1. Transmission of rays between two identical spherical mir-
rors, M1 and M2, and the reflection on the M2 surface, in the
x—z plane of a Cartesian coordinate system. R, radius of the curvature
of the spherical mirrors; D, mirror spacing; O, origin of coordinates;
d,, optical path length for the nth transmission between M1 and M2;
(%15 x,,_1), spot location on M1 and initial ray inclination angle; (x,,,
x,,), spot location on M2 and the ray inclination angle after #th trans-
mitting between M1 and M2 and reflected by M2.
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at an angle of 10°, the paraxial approximation of sin 0 & € has
an error of 0.5%, where these errors are not accounted for in
the standard ABCD matrix. With an increasing pass count,
these errors will be accumulated and amplified, and distort
the real pattern. The presence of paraxial approximation and
a lack of equation-based designs that match the actual ray tra-
jectories in MPC limit the ability to develop other spot patterns
that may provide other viable MPC arrangements. In particu-
lar, the lack of consideration of spherical aberration effects,
which are not easily simulated in conventional matrix-based
approaches, is a major limitation of these design endeavors.

In this Letter, we report a novel dense pattern MPC design
using two common identical spherical mirrors. An accurate
ABCD matrix without the paraxial approximation was developed
to describe the propagation of both the paraxial and marginal
rays between the two spherical mirrors and the reflection of these
rays on a mirror surface. A rich set of spot patterns on the mirrors
can be created by numerical simulations due to the presence of
the spherical aberrations. These novel spot distributions from a
simpler mirror surface curvature and with a lower cost have
the similar patterns as those obtained by Ozharar er al [15],
who used an aspherical mirror designed with varying focal
lengths.

The reported MPC was assumed to consist of two identical
spherical mirrors. In the paraxial analysis of a two-spherical-
mirror MPC, the ABCD matrix describing one pass count
consists of a standard transmission matrix and a standard reflec-
tion matrix:

A4 Bl [ 1 o] [1 D )
C D| |-2/R 1] |0 1]
In order to remove the paraxial approximation, we define
two operators S and L, which are S =sin ¢ and Lo =
-2 arcsin(@/R), respectively, where ¢ is an arbitrary rational

number. Therefore, the new ABCD matrix describing one pass
count without the paraxial approximation can be expressed as

A B 1 o] [1 4,8

[C D}_[L 1}'{0 1}' (@)
An iterative scheme is used to calculate the ray parameters for
each pass count due to the fact that the modified ABCD matrix
varies with each pass count. Using a Cartesian coordinate sys-
tem, a ray before the transmission and reflection between the
(7 - 1)th and the nth pass count is described by the coordinates
(x,-1> 7,,.1) of the point where it is located on the mirror surface
of M1 or M2, and for which the ray has the inclination angles
(x)_1» y5_1)> as depicted in Fig. 1. The corresponding ray
parameters after the nth pass count are calculated using the
new ABCD matrix as follows:

X, =%, +d, sinx, ;5 x,=-2-arcsin x,/R + x4,

y, = -2-arcsin y, /R +y! .
@)

The above iterative equations can be carried out as long as &,
for each pass count is obtained.

If an incident ray enters the MPC from M1 with the initial
location (xg, y,) on the M1 surface and inclination angles (x;,
75)> the location z; on the M1 surface and the rest inclination
angle z;, can be calculated using the spherical equation for M1:

Yp =Yy td,-siny, ;s
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zg = R -/ R? - x5 - 55
zp = arcsin /1 - (sin x})? - (sin y})" @)

Hence, z, can be expressed by solving the line-sphere
intersections:

Z, = (Sin Z;l—l)z : <_bn/2 + (_l)n_l : \/ (bn/z)2 —ay - Cn) >

(®)
where 4, b,, and ¢, are given by
a, = (sinz, )72,
Xersinxy 4y, siny) 1
sinz) | + <1 " (sinz’ 1)2) “Zn-1
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. ’ 2 . 2
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The optical path length for each pass count can be expressed as

dn = (Z” - zn—l)/ sin Z;zfl' (7)
Thus, z, can be calculated using the results from Eq. (3):

o arcsin \/1 - (sin x})* - (sin y)?

n Ciy @

We first compared the calculated difference from the standard
ABCD matrix Eq. (1) and the modified ABCD matrix without
the paraxial approximation of Eq. (2). Two identical spherical
mirrors with 25 mm focal length and 35.5 mm mirror spacing
were employed. The initial location and inclination angles are
(-8.5, 4.1 mm) and (16.1°, 8.1°), respectively. The result from
Eq. (1) shows a standard 2 x 2 cm? Herriot pattern as depicted
in Fig. 2(a), while the result from Eq. (2) displays a spot pattern
consisting of five arcs, as shown in Fig. 2(b). The spherical aber-
ration makes the symmetrical Herriot distribution spots from a
paraxial calculation yield five separated arcs. Therefore, when a
marginal ray with a large inclination angle enters a MPC com-
prising two spherical mirrors, the aberration must be taken into
account. The modified ABCD matrix can perform a calculation
of ray tracing and describe the gradual evolution of the spot
patterns on the mirror surface, which is a practical design tool.
Subsequently the parameters of spherical mirrors were changed
to 200 mm focal length and 266.3 mm mirror spacing.
The small inclination angles (-3.4°, 0°) and initial location
(8.1, -10.8 mm) were employed. The result from Eq. (2) in
Fig. 2(d) is in excellent agreement with that from Eq. (1) in
Fig. 2(c), which verifies that the modified ABCD matrix
can return to the standard ABCD matrix with a small angle
incident ray.

Numerical solutions were investigated for two-spherical-
mirror MPCs with different entry beam parameters. An abun-
dant set of exotic dense spot patterns generated by Eq. (3) is
plotted in Fig. 3. In order to demonstrate that the two spherical
mirrors have the powerful ability to create a set of intricate spot
patterns that is the same as for aspherical mirrors, the four plots
in Fig. 3 depicted similar spot patterns, as in Fig. 4 of Ref. [15],
where an aspherical mirror was employed. All spots on the two
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Fig. 2. Standard Herriot spot patterns produced by a conventional
ABCD matrix with (a) large and (c) small angle incident rays. The
corresponding spot patterns calculated by the modified ABCD matrix
with (b) large and (d) small angle incident rays. The gray lines are the
trajectories between two neighbor spots (similarly hereinafter).

mirrors were projected onto an x—y plane. The initial inclina-
tion angles and the focal length of the spherical mirror are taken
as (6.56°, 6.56°) and 25 mm, respectively. In all these patterns,
the only different parameters for each pattern are the initial en-
try locations on M1, the mirror spacing, and the pass count
under the re-entrant condition, which are given in Table I.
Figure 3(a) gives a morning-glory-like spot pattern in which
the “petals” face the “flower heart,” while Fig. 3(d) exhibits
a sunflower-like spot pattern in which the “petals” face the out-
side. More concise spot patterns were obtained by adjusting
the mirror spacing and the entry location of the incident ray
on MI. Figure 3(b) shows a three-nested-circle spot pattern,
while Fig. 3(c) exhibits a seven-nonintersecting-circle spot
pattern. For these spot patterns, an angle tolerance of £0.3°
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Fig. 3. Four exotic spot patterns generated by two-spherical-mirror
MPC. (a) A morning-glory-like spot pattern, (b) a three-nested-circle
spot pattern, (c) a seven-nonintersecting-circle spot pattern, and (d) a
sunflower-like spot pattern. The initial ray parameters for each pattern
are listed in Table 1.
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is allowed with 2 mm entry and exit holes of light. In order
to validate the calculation model, the spot patterns in Figs. 3(a)
and 3(c) were simulated by use of TracePro. The results were
shown in Fig. 4. The consistency between the calculated and
simulated results verifies the validity of the modified ABCD
matrix.

With a dense spot pattern, the two-spherical-mirror MPC
achieves a long total optical path length, but in a small size.
A long total optical path length can improve the detection
sensitivity, while a small size not only can enhance the rate of
gas exchange and, hence, reduce the response time, but also
can realize a compact MPC. The total optical path length L
and the volume V' of each MPC are listed in Table 1. Here
the distance from the farthest spot to the original point for each
pattern are selected as their mirror radii. The volume is defined as
the product of the mirror area and the mirror spacing. The lon-
gest optical path length is the seven-nonintersecting-circle spot
pattern with a value of 12.92 m in Fig. 3(c), while the smallest
volume is the three-nested-circle spot pattern. In fact, a ratio of
the total optical path length to the volume can better reflect
the space utilization of the ray pattern in a MPC. According to
column 7 in Table 1, the most efficient space utilization is the
three-nested-circle spot pattern in Fig. 3(b), and the second one
is the seven-nonintersecting-circle spot pattern in Fig. 3(c).

The deficiency of the paraxial approximation for these
unusual spot patterns results mainly from the large initial incli-
nation angle of the entry ray, which plays an important role in
the spot pattern evolution caused by a spherical aberration.
When the important ray parameter, the initial inclination angle,
remains unchanged, each spot pattern in Fig. 3 can be manip-
ulated to increase the spot density or scale up or down. To
increase the spot density, the initial location on M1 (xy, ¥,)
of the entry ray and the inclination angle (x{, y{) remain un-
changed. The focal length f and mirror spacing D multiply
the intended gain factor. The pass count 7 will increase or
decrease by the gain factor. For example, the pass count 7 in
Fig. 3(d) can be two times more (412 times) for the parameters
f =50 mm and D = 122.79 mm, as shown in Fig. 5(a). It
should be noted that the increase of the spot density does not
occur on the original sunflower-like spot pattern. The new sun-
flower-like spot pattern in Fig. 5(a) becomes wide and grows two
times larger, although the entry location and angle remained un-
changed. Moreover, the new and original Ds do not have the
exact double relationship, but 1.99 times. In other words, after
f and D multiply the gain factor, the D requires fine tuning in
order to obtain a new sunflower-like spot pattern since, other-
wise, the spot pattern is distorted. A tentative explanation is that
there occurs nonlinear calculation processing in Eq. (3).

When the inclination angle (x;, ;) of the entry ray remains
unchanged, and after the initial entry location (xy, y,), the focal
length f and mirror spacing D multiply the same scaling factor
simultaneously, the spot patterns can be scaled up or down, as
can be seen in Eq. (3). For example, if (xq, y,), f> and D in
Fig. 3(d) are increased by a factor of 2, i.e., (6.28, -11.26 mm),
f =50 mm and D = 123.52 mm, a two times larger similar
pattern without any distortions can be obtained with the same
pass count 7, as shown in Fig. 5(b).

Due to the nonlinear calculation in Eq. (3), numerical sim-
ulations were performed in order to verify if the two-spherical-
mirror MPC can meet the re-entrant condition. In other words,
the incident ray is able to continue to retrace the same spot
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Table 1. Initial Entry Location (xy, y,) on M1, Mirror Spacing (D), and Pass Count Under Re-Entrant Condition (v) Used to

Obtain the Spot Patterns Depicted in Figs. 3(a)-3(d)?

Pattern (x9> o) (mm) D (mm) v L (m) V (mL) RLV (cm™2) (x5 3,) (mm) (x5 y7) (°)
Fig. 3(a) (8.56, -5.35) 61.16 130 7.95 75.65 10.51 (8.52, -5.51) (6.55, 6.45)
Fig. 3(b) (5.60, -6.18) 24.57 306 7.52 6.44 116.77 (5.69, -6.40) (6.40, 6.37)
Fig. 3(c) (3.17, -5.54) 61.54 210 12.92 26.42 48.90 (3.19, -5.58) (6.51, 6.50)
Fig. 3(d) (3.14, -5.63) 61.76 206 12.72 26.53 47.95 (3.10, -5.55) (6.63, 6.63)

“Total optical pathlength (L), volume of MPC (V), and ratio of L to V' (RLV); spot location (x,, y,) on M1 and ray inclination angle (x,, y,) after vth pass count.
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Fig. 4. Simulations of (a) a morning-glory-like spot pattern and
(b) a seven-nonintersecting-circle spot pattern on M2 by use of
TracePro. The spot size stands for irradiance.
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Fig. 5. Manipulation of (a) the spot density and (b) the pattern size
for a sunflower-like spot pattern with a fixed ray inclination angle.

pattern again and again after every v times pass counts. In this
simulation, with a fixed inclination angle (6.56°, 6.56°), the
mirror spacing D and initial location (xg, y,) to produce this
pattern were adjusted manually in order to make the final (x,,
y,) and (x,, y, ), as well as the initial (xy, y,) and (x, y;) overlap.
In fact, the spot patterns in Fig. 3 are those that have been
adjusted manually. The last two columns in Table 1 list the
spot locations on M1 and ray inclination angles after the
vth pass count for the four patterns in Fig. 3. Based on these
values, the re-entrant conditions can be met for all four pat-
terns. To understand the re-entrant behavior, a periodic func-
tion sin ¢ should be paid attention to in the expression of x,
and y,. If x,, and y, are linear, a re-entrant trajectory can be
achieved for any initial beam parameters. However, a nonlinear
function arcsin @ occurs in x,, and y,. The mutual interaction
and restriction between arcsin ¢ and sin ¢ generate periodic
patterns and meet the re-entrant condition with some specific
initial beam parameters.

In conclusion, we developed a new ABCD matrix without
the paraxial approximation, which allows the investigation of a
two-spherical-mirror MPC in the presence of a spherical

aberration. The results show that the spherical aberration
was accumulated and amplified for each transmission and re-
flection, producing an abundant set of intricate spot patterns,
which are very different from the standard Herriot circle spot
pattern. The excellent ratio of the total optical path length to
the volume can realize a highly sensitive and compact gas sen-
sor, with a low cost due to the use of a pair of common spherical
mirrors. Compact or portable MPCs such as the one described
in this Letter have many uses in defense, atmospheric monitor-
ing, and medical diagnostics. Further topics of interest include
the fabrication and testing of the two-spherical-mirror MPC, as
well as the investigation of the effect of beam interference in the

MPC of this type.
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