

Frank K. Tittel, Rafal Lewicki and Gerard Wysocki.

Rice Quantum Institute, Rice University, Houston, TX http://ece.rice.edu/lasersci/

- Motivation: Wide-range of Chemical Sensing
- Fundamentals of Laser Absorption Spectroscopy
- New Laser Sources and Sensing Technologies
- Selected Applications of Trace Gas Detection
 - Environmental Monitoring (H₂CO)
 - Detection of nitric oxide and ethanol
 - QEPAS based monitoring of broadband absorbers
- Future Directions and Summary

Work supported by NASA, NSF, DoE and Welch Foundation

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants

192 1 a sur il

OUTLINE

Research

- Combustion Sources and Processes (e.g. fire detection)
- Automobile, Truck, Aircraft and Marine Emissions
- Rural Emission Measurements
 - Agriculture & Forestry, Livestock
- Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Applications in Health and Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

Sensitivity Enhancement Techniques

Optimum Molecular Absorbing Transition

- Overtone or Combination Bands (NIR)
- Fundamental Absorption Bands (MID-IR)

Long Optical Pathlengths

- Multipass Absorption Cell (White, Herriot)
- Cavity Enhanced, Cavity Ringdown & Intracavity Spectroscopy
- Open Path Monitoring (with retro-reflector)
- Evanescent Wave Spectroscopy (Fibers & Waveguides)

Spectroscopic Detection Schemes

- Frequency or Wavelength Modulation
- Balanced Detection
- Zero-air Subtraction
- Photoacoustic and Quartz Enhanced Photoacoustic Spectroscopy
- Noise Immune Cavity Enhanced-Optical Heterodyne Molecular Spectroscopy (NICE-OHMS)

Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS	IR LASER SOURCE Wavelength, Power		
Sensitivity (% to ppt)			
Selectivity (Spectral Resolution)	Single Mode Operation and Narrow Linewidth		
Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers	Tunable Wavelength Beam Quality		
Directionality or Cavity Mode Matching			
Rapid Data Acquisition	Fast Time Response		
Room Temperature Operation	No Consumables		
Field deployable	Compact & Robust		

Key Characteristics of Mid-IR Quantum Cascade Lasers for Spectroscopy

- Laser wavelengths cover the entire Mid-IR range from 3 to 24 μm
- High power (>500 mW cw, >5W peak for pulsed)
- High spectral purity single frequency with DFB structure or external cavity: < kHz to 33 MHz
- Continuous tuning by temperature (~10 cm⁻¹), current (~1 cm⁻¹) or external cavity (>200 cm⁻¹ → pulsed mode)
- High reliability: low failure rate, long lifetime and robust
- Capable of room temperature operation
 - Pulsed: up to +150°C
 - CW: up to RT

Spectra of CW DFB QC at 7.8µm

- Single mode emission with SMSR>25 dB (resolution limited by FTIR)
- Wavelength coverage:
 One laser: ~ 10-15 cm⁻¹
 In total: > 100cm⁻¹ (7.7-8.3μm)
- Average R_{th}~12.4 K/W Average tuning coefficient β~8.88*10⁻⁵ K⁻¹

S. Blaser, A. Wittmann, L. Hvozdara, The 2nd International Workshop on Quantum Cascade Lasers

Widely Tunable, CW, TEC Quantum Cascade Lasers

TTIR

Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)

Current Trace Gas Sensor Areas being Explored at Rice

- Methods employed
 - Extended pathlengths
 - Cavity ringdown spectroscopy (CRDS)
 - Integrated cavity output spectroscopy (ICOS)
 - Wavelength and amplitude modulation
 - Pulse-to-pulse fluctuation removal by comparing the same pulse on the same or another detector
 - Quartz tuning fork based photoacoustic spectroscopy
- 16 gases detected: NH₃, CH₄, H₂S, N₂O, CO₂, CO, NO,C₂H₂ H₂O, OCS, C₂H₄, SO₂, C₂H₅OH, C₂HF₅, H₂CO, C₂H₆, HCN
- Practical applications
 - NASA Crew Health Maintenance & Life Support H₂CO, NH₃
 - DoE radioactive site remediation
 - Medical breath analysis OCS, NO, CO₂, acetone
 - Industry catalyst poisoning CO
 - Urban air smog H₂CO

Motivation for Precision Monitoring of H₂CO

- Precursor to atmospheric O₃ production
- Pollutant due to incomplete fuel combustion processes
- Potential trace contaminant in industrial manufactured products
- Medically important gas

Houston Ozone Chemistry

- Rapid oxidation of highly reactive VOCs leads to ozone formation in urban areas
- As a major petrochemical center, the Houston region produces ~30 billion pounds of ethylene annually

$$\frac{H}{H}$$
C=C $\frac{H}{H}$ $\frac{OH}{OH}$ $\frac{H}{H}$ C=O

TexAQS II Field Campaign Summer 2006

- To study ozone formation and transport, a coordinated field study was conducted during August to September 2006 in the Greater Houston area
- 5 aircraft, one ship, two ground chemistry sites, ~20 periphery and meteorological sites were employed during TexAQS II
- Participation by ~300 scientists from academia, national laboratories, industry and government agencies

Moody Tower, UH Campus

FTIRS

Motivation for Nitric Oxide Detection

- Atmospheric Chemistry
- Environmental pollutant gas monitoring
 - NO_x monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection

NO as a Biomarker

- NO is biochemically involved in most tissues and physiological processes in the human body
- NO excretion increases in exhaled breath in lung diseases such as :
 - ✓ Asthma¹
 - ✓ Chronic Obstructive Pulmonary Disease²
 - ✓ Acute lung rejection³
 - ✓ Acute respiratory distress syndrome⁴
 - ✓ Pneumonia (useful for intubated patients)⁵

Alving K, E Weitzberg, JM Lundberg. Increased amount of NO in exhaled air of asthmatics. Eur Repir J 1993; 6; 1368-1370.

2Wasim M, S Loukides, S Culpritt, P Sullivan, S Kharitonov, P Barnes. Exhaled NO in COPD. Am J Repir Crit Care Med 1998; 157. pp 998-1002.

2Silkoff PE et al. Exhaled NO in human lung transplantation. A noninvasive marker of acute rejection. Am J Repir Crit Care Med 1998; 157(6):

*Brett SJ, Evans TW. Measurement of endogenous NO in the lungs of patients with the ARDS. Am J Repir Crit Care Med 1998; 157 (3 Pt 1): 993-7.
*Adric C et al. Exhaled and nasal NO as a maker of pneumonia in ventialed pateints. Am J Repir Crit Care Med 2001; 163(5):1143-9.

Biomarkers Present in Exhaled Human Breath

As many as 400 different molecules in breath; many with well defined biochemical pathways

BROADBAND					
ABSORBERS	Compound	Concentration	Physiological basis/Pathology Indication		
	Acetaldehyde	ppb	Ethanol metabolism		
\rightarrow	Acetone	ppm <200ppb)	Diabetes mellitus response, fasting response		
	Ammonia ppb		Protein metabolism, liver and renal disease		
Carbon dioxide		%	Product of respiration, Heliobacter pylori		
	Carbon disulfide		Gut bacteria, schizophrenia		
Carbon monoxide		ppm (<3ppm)	Production catalyzed by heme oxygenase		
	Carbonyl sulfide p Ethane p		Gut bacteria, liver disease		
			Lipid peroxidation and oxidative stress		
			Gut bacteria		
Ethylene		ppb (<10ppb)	Lipid peroxidation, oxidative stress, cancer		
	Hydrocarbons	ppb	Lipid peroxidation/metabolism		
	Hydrogen ppm Isoprene ppb Methane ppm (<		Gut bacteria		
			Cholesterol biosynthesis		
			Intestinal methanogic bacteria		
			Methionine metabolism		
			Metabolism of fruit		
			Protein metabolism		
		ppb (<100 ppb)	Production catalyzed by nitric oxide synthase		
	Oxygen	%	Required for normal respiration		
_	Pentane	ppb	Lipid peroxidation, oxidative stress		
	Water	%	Product of respiration		

Terence Risby, Johns Hopkins University

Monitoring of two broadband absorbers: C₂HF₅ & C₃H₆O

- Freon 125 (C₂HF₅)
 - Refrigerant (leak detection)
 - Safe simulant for toxic chemicals e.g. chemical warfare agents
- Acetone (C_3H_6O)
 - Recognized biomarker for diabetes and fasting response

QEPAS Performance for 14 Trace Gas Species (Feb.'08)

Molecule (Host)	Frequency, cm ⁻¹	Pressure, Torr	NNEA, cm ⁻¹ W/Hz ⁻⁵	Power, mW	NEC (τ=1s), ppmv
H ₂ O (N ₂)**	7306.75	60	1.9×10 ⁻⁹	9,5	0.09
HCN (air: 50% RH)*	6539.11	60	< 4.3×10 ⁻⁹	50	0.16
C ₂ H ₂ (N ₂)**	6529.17	75	~2.5×10 ⁻⁹	~ 40	0.06
NH ₃ (N ₂)*	6528,76	575	3.1×10 ⁻⁹	60	0.06
C ₂ H ₄ (N ₂)*	6177.07	715	5.4×10 ⁻⁹	15	1.7
CH ₄ (N ₂ + 0.3% H ₂ O)*	6057.09	950	1.0×10 ⁻⁸	13.7	0.8
CO2 (breath ~100% RH)	6361,25	90	1.6×10 ⁻⁸	26	410
H ₂ S (N ₂)*	6357.63	780	5.6×10	45	0.20
CO ₂ (N ₂ +1.5% H2O) *	4991.26	50	1.4×10 ⁻⁸	4.4	18
CH ₂ O (N ₂ :75% RH)*	2804.90	75	8.7×10 ⁻⁹	7.2	0.12
CO (N ₂)	2196.66	50	5,3×10 ⁻⁷	13	0.5
CO (propylene)	2196,66	50	7.4×10 ⁻⁸	6.5	0.14
N2O (air+5%SF6)	2195.63	50	1.5×10 ⁻⁸	19	0.007
C ₂ H ₅ OH (N ₂)**	1934.2	770	2.2×10 ⁻⁷	10	90
C ₂ HF ₅ (N ₂)	1208.62	770	7.8×10 ⁻⁹	6.6	0.009
NH ₃ (N ₂)*	1046.39	110	1.6×10 ⁻⁸	20	0.006

For comparison: conventional PAS 2.2 (2.6)×10⁻⁹ cm⁻¹W/ $\sqrt{\text{Hz}}$ (1,800; 10,300 Hz) for NH $_3^{*, (**)}$ * M. E. Webber et al, Appl. Opt. 42, 2119-2126 (2003); ** J. S. Pilgrim et al, SAE Intl. ICES 2007-01-3152

Impact of FTIR on Laser based **Chemical Trace Gas Sensing**

Improved microresonator
 Improved microresonator and double optical pass through ADM
 With amplitude modulation and metal microresonator

NNEA - normalized noise equivalent absorption coefficient. NEC - noise equivalent concentration for available laser power and τ =1s time constant, 18 dB/oct filter slope.

Summary and Future Directions

Near and Mid-Infrared Semiconductor Laser based Trace Gas Sensors

- Compact, robust sensor technology based on multipass cell absorption, cavity enhanced and quartz enhanced photoacoustic spectroscopy (QEPAS)
- High sensitivity (<10⁻⁴) and selectivity (3 to 500 MHz)
- · Fast data acquisition and analysis
- Detected 13 trace gases to date: NH₃, CH₄, H₂S, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, SO₂, C₂H₅OH, C₂HF₅ and isotopic species of C, O, N and H.

New Applications of Trace Gas Detection

- Distributed sensor networks for environmental monitoring (NH₃, CO, CH₄, C₂H₄, N₂O, CO₂ and H₂CO)
- Inexpensive and sensitive sensors for industrial process control and chemical analysis (HCN, NO, NH₃, H₂O)
- Sensors for medical and biomedical diagnostics (NO, CO, COS, CO₂, NH₃, C₂H₄)
- Hand-held sensors and sensor network technologies for law enforcement

Future Directions and Collaborations

- Further improvements of the existing sensor technologies using novel, thermoelectrically cooled, cw, high power mid-IR interband and intersubband quantum cascade lasers and OEPAS
- New applications enabled by novel widely tunable quantum cascade lasers (especially sensitive concentration measurements of broadband absorbers, in particular VOCs and HCs)
- Development of gas sensor networks based on QEPAS and LAS

RICE