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OUTLINE

*Quartz Enhanced Photo-Acoustic Spectroscopy
(QEPAS): basics and merits

a) Custom QTFs for QEPAS applications

b) Single tube on beam QEPAS

c) QTFs 1%t overtone flexural mode

d) Dual-antinode excited QEPAS sensor

e) Dual-gas QEPAS sensor

Future Directions and Conclusions
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Quartz-Enhanced Photoacoustic Spectroscopy
Introduction and Basic Operation

® Optical radiation is focused between the prongs of a quartz tuning fork
® Trace gases absorb optical energy at characteristic frequencies
® A pressure wave (sound) is generated by modulating the laser power

@ Resonant mechanical vibration is excited by the sound waves
® The mechanical vibration is converted to an electrical signal via piezoelectric effect
® The trace gas concentration is proportional to the electrical signal

s target traces . E
s - ! . Light Source

Current signal

Quartz-Enhanced Photoacoustic Spectroscopy
Merits and main characteristics

® Very small sensing module and sample volume (a few cm3)
@ Extremely low dissipative losses

@ Optical detector is not required

® Wide dynamic range {from % down to ppt)

@ Immune to environmental acoustic noise

@ Acoustic micro-resonators to enhance the QEPAS signal

@ Sensitivity scales with laser pomﬁf Several molecure

@ Cross sensitivity issues

® Alignment cost (no light hitting QTF or micro-
resonators)

@ Responsivity depends on the molecular energy
transfer processes

Record sensitivity: 50 part-per-trillion
A = 10.54 ym (mid — [R), SF;
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Quartz tuning fork Physics

Free motion conditions: Euler-Bernoulli equation

a*y(x.t) aty(x.t) _

Bl tPA—5 =0

es W fo=——tknz [
Resonance frequencies "= 8viz P

QEPAS signal: S oC P(x@g

Quality factor: Q@ = f,/Af, rwnm

of o dx
Piezoelectric signal: | = aa—; =

Custom tuning forks comsoL vy
. 3 MULTIPHYSICS® Q
Realization

Objective: Design of a tuning
fork optimized for QEPAS sensing
applications

ki

Goals:

* Decrease the resonance frequency

* Increase the gap between the prong

* Increase the quality factor

* Increase the charge collection efficiency

All these figures of merit depend on the tuning
fork geometry
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Custom tuning forks
Fundamental Mode om0 ——
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Fiber-amplified QEPAS
with custom QTFs

3 Gas flow ¢
i I
Opto-isolator __ -
= =
f
l!l
EDFA VW
i N c
RS232 + ustom QTF
Computer y ° Watt-level excitation source ! 1.5 W @ 1.58 um
7y = » Standard QTF shown high noise level and
Driver Lock-in | require electrical modulation cancellation
A g amplifier
Asin(2rf;¢/2) * Custom tuning forks with large prong spacing
Function > (700um) gives low-noise and allow easy
generator Trigger £/2 LTI alignment

Gas Target H,S

Standard QTF
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Fiber-amplified QEPAS with custom
QTF: Results
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QEPAS detection sensitivity enhanced by a factor of ~40,
compared to the case of a sensor using a bare custom QTF

Detection sensitivity @ 60sec: 30 ppb
NNEA: 1.3:108 cm™-W/VHz

QEPAS sensors in the THz range

Standard QTFs are characterized by a compact sensitive volume
(~0.3%0.3%3 mm3) 015 o rNOWN

—_— EOwl:NOlnN,mdN,O

c.10

In QEPAS experiments, it is critical to _
avoid laser illumination of the QTF, since =
the radiation blocked by the QTF prongs, &
generates an undesirable non-zero B
background which carries a shifting fringe-

like interference pattern. 008 e

"
lemm')

| The limited space (300 ym) between the QTF prongs is comparéble
with the wavelength of THz sources so far has represented the main
limitation for the use in QEPAS-based sensor systems in THz range.

005

Larger sized QTFs are mandatory to operate in the THz
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15t THz QEPAS sensor
employing custom QTFs
- i

Alp Applied Physics

Letters

100 ppm of
Methanol

Prongs spacing = 1mm 020
QTF with same geometry of J;ﬁll‘
standard one (~6x bigger)

m{.d
131048 131052 131056 131.060
Frequency (cm")
@ 4 sec Lock-in constant, NEC = 7 ppm (laser
power 40 uw)
NNEA = 2.0 x10-*° cm1W/(Hz) /2

Integration time (s)

THz QEPAS results employing a Novel <'J,,
CUStOm QTF Prongs spacing = 700 um : ‘v,t&‘

Rt
*  Wavenumber: 131.054 cm* (3.93 THz)

( ) * Absorption line-strength: 4.28x10-2! cm/mol
detection * Optical power: 40 yW
SINUSOIDAL WAVEFORM Refurence sigml ,'/—a) ' b) Y ‘\‘\

seamp [

THz QCL

30
40 48 B0 5§ 80

u (mm)

96.4% of the light intensity passes
between the QTF prongs

TRANSIMPEDANCE | LOCK-IN | | A

TEMPERATURE
AMPLIFIER AMPLIFIER LY

CONTROLLER
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THz QEPAS results employing a Novel (/g

Custom QTF

100 ppm of methanol in N, at P=10 Torr
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Comparison between QTFs with
custom and new geometry

¢ Same noise level

* Signal to noise ratio (SNR) and
Sensitivity 9x better for QEPAS
system employing a QTF with new
geometry

* @ 30 sec integration time:

-~ -
e SIS SN s _ m—- -

QEPAS RECORD

QEPAS sensors comparison
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<C E SF, H:51 rates of THz rotational
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107" “"' 1 high QTF Q-factors and
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Single-tube micro-resonator QEPAS
Novel approach

P
J L
I Iz
acoustic pressure distributions in different
spectrophone configurations

T ] Two small slits are cut symmetrically on each side of
:  —ew— the tube waist in the middle of the AmR, where the

It Waha thickaes 4 0
N-_J acoustic pressure antinode is located.

Single-tube QEPAS Novel approach:
Results

* Custom tuning forks @ 7,2 KHz with larger prong spacing

DFB Laser 1Jllﬂ.ll
Collimator n
() ==
Optical Flber
h
Pre-amplifer

Laser I Lg Irumm B
Driver fin Gencrator

RS232 RS232

Reference Signat

Two smalt slits are cut symmetrically on each side of the l Computer l‘—|°*‘° e
tube waist in the middle of the AmR, where the acoustic
pressure antinode is located.
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Single-tube QEPAS: Results

Optimization of the AmR
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188 190 195 200 208 210
Laser Current (mA)

AmR oD D
AmR #1 0.8 0.55
AmR #2 0.9 0.65
AmR #3 1 0.75

Single-tube QEPAS:

Geometrical Parameters

AmR #1 08 055 34 078
AmR #2 09 0.65 k-] 0.76
AmR #3 1 0.7s 38 076
Bare custom QTF
Custom QTF with an optimal traditional on-beam
configuration
Bare standard QTF

Standard QTF with optimal traditional on-beam

configuration

0.24

033

033

Results

5176

gain factor of 3 with respect to the standard on beam

configuration;

NNEA for SO-QEPAS detection is 1.5 times lower then the

232

676

517

25
605

A SNR gain factor of 128 with respect to the bare QTF and a

standard on-beam configuration using a commercial 32 KHz

QTF (1.2 vs 1.8 x 10 cm? W/VHz);

mm single tube

Same detection sensitivity for a 46 mm double tube and a 26

Micro-resonator length for standard 32KHz QTF is ~10 mm

121

122

134

116

135
16

44 322

191 3.02x10°
ss¢ 128 37 1.21x10%
385 > 22 175x10*
43 L 28 159x10%
40
185 1 38 378107
378 30 38 1.8x10*
e
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Losses at higher
vibrational modes:

Contribution from
surrounding Qair <
medium:

If %‘rrw2 VAP, fy 3> 3Tuw @ P =75torr, T=25°C > f3 > 3KHz

e OC
(2CllT 3

Custom tuning forks 1%t Overtone Mode

1_
Q Ko

1
Qsup X e

3
+ anz Jamupefo

Contribution from interaction
with QTF support:

4

fs

1 —
B 3mpw

® At the 3™ f.m., support losses dominate the
energy dissipation processes

80T Vfn
NI

® Air losses becomes important only for QTFs
with very thin prongs

s
08 04 00 -04 08
Normakzed taleral drsplacement

Current (nA)

Custom tuning forks overtone modes

E6-f;

Fund
mode

Current (nA)

b)

Current (nA)
8

QTFs chosen for the
investigation have f; < 50KHz
QTF®2

Results:

* Qvertone mode can exhibit
higher performance with
respect to the fundamental one

Road map:
* Study of the overtone mode
* QEPAS sensors with overtone mode
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QEPAS signal profiles:

I‘"{' @ Moving the laser spot along
symmetry axis of the

oo
wo

® 1° f.m.: QEPAS signal is a maximum
just below the top of the QTF;

@ 39 f.m.: QEPAS signal maximum
when the laser spot is located at
the lower antinode.

f, and f; modes

=)
w

w

-

2 4 ] 8 0 12
Distance from the QTF lop (mm)

s
prong, the QEPAS signal §'
follows the mode profile. g o

5o

@ At the higher antinode
position, a large part of the
sound wave is lost 1.0

overtone mode

] Iz

Asound 2<] 1+ I2< Asound

et bt T et e

Current (nA)
coB888

Single-tube approach with QTF

Total length of the micro-
resonator tube is inversely
proportional to the QTF the
resonance frequency

@ 2.9KHz —>A=118 mm

First overtone mode frequency is 6.3
"times larger than the fundamental one
@ 17.8 KHz —A=19 mm

o QTFus

2678 2880 T 17702
Frequency (Hz)
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1t overtone

(a) DFB_ Fiber
e,

Near-IR SO-QEPAS operating at the QTF

Excitation source:
1.369 nm 23 mW
Absorption line:

Water (H,0) 7303.23 cmy’!
8.05%10-22 cm:mol !

Collimator 2
L "~
Laser
e
Driver ;
Pre-amplifer L‘ W \ Leagh
L Signal ! i !
Add:
[\ Sine_['Function | [ Reference | Lock-in e of
I L Remp | Generator Amplifier =

(b)

Sitt length
A_width

Collimator diameter 200 pm
Temperature: 25 °C
Pressure: 760 Torr

Lock-in amplifier:

SR830 1s/12dB 0.25 Hz

Results

Optimization of the AmR

5.6

Single-tube QEPAS with overtone:

r'S
1

Lorentz fit

SO-QEPAS signal (mV)
- ~ w r
& » b B

)
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s SO-QEPAS 1% H,0

E

I‘O 1lz 1'4 1.6 1.8
AmR length (mm)

L 55 gepas =38 mm

20

L yubeam=46 MM @ A SNR gain factor of 380 with respect to the bare QTF @ the fund. mode
® Total micro-resonator optimal length of 14.5 mm
@ Micro-resonator length for 32KHz QTF is 10 mm

Signal comparison
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Double antinode excited SO-QEPAS
operating at the QTF 1t overtone

PZT PM ‘
=i
Mirror |
(a) | r-
R¢
PA
Signal
Function Lock-in [ i
Generator I Reference Amplifier @ U Fe (d) v

@ A custom-made QTF with a prong length of 17 mm and a prong spacing of 700 um was employed Targe
@ Target Gas: water vapor in air at a pressure of 700 Torr

@ Pigtailed distributed feedback (DFB) laser emitting at 1.37 um

Double antinode excited SO-QEPAS

5 b *eo-eze=s’s
g
o ,g - —‘\\.ll — h:
g £ - \ h
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B 160 e
2ap@ (b) = !
¢ 7 4 6 8 o Uw o R B S R TR TR VI TR
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2fQEPAS m-phase and quadrature signals (panel (a)) and related phasc diffc 200 T T T T
(panel (b)) measured for the bare custom QTF as a function of i ——Bare QTF ;E‘ IX
150 F —— on-beam QEPAS = i b
The phase difference has to be compensated to —— DAE-QEPAS g 3 Ve
100 . g
)

maximize the QEPAS signal
[ 182%H,0

A single mode fiber was coiled around a piezoelectric
transducer serving as a phase compensator

QEPAS signal (mV)
2

] 50 ¢
@ A SNR gain factor of 500 with respect to the bare eor ) ) ) .
QTF operating on the fundamental mode 80 % 100 110 120
® Total micro-resonator optimal length of 19 mm Laser current (mA)
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[ -
Single-tube QEPAS with overtone: Results
Performance comparisons:
q OD ID L, Gain
QTF QTF Configuration (mm) (mm) ) factor NNEA

bare QTF 1 1.59*10+
two-tubes 1.5 1.3 46 40 4.0*10%
Custom single-tube 0.9 0.65 38 128 1.21*10®
Single-tubet+overtone  0.98 0.62 14.5 380 2.76*10°
Dovhlciannode s BiYss i W10 19 500 1.73*10°

overtone
bare QTF 1 3.7*107

Standard
on-beam 1.24 0.8 10.0 30 1.8*10%
(NNEA: normalized noise equivalent absorption coefficient cm™2 - W/v/Hz )

s higher than that attained Dy a conventional

ctrophone based on commercial 32 kHz QTF

Dual-gas QEPAS operating at both the QTF
fundamental and 1%t overtone

! Gas flow ¢
i [ Ll o I E | fu)
[ = i - \ sl | ,
g . j

. I I‘ -I
é% t W] C | Two beams from two independently
] modulated lasers are focused between
£2 72 the prongs of a quartz tuning fork at

o Ty . " .

AP [, ek | A two different positions to excite both
- the fundamental and first overtone

flexural modes simultaneously

mu nru
Function | Trigger Trigger | Function
generator 2 generator |

Computer

Dual-gas quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor system based on a frequency
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Dual-gas QEPAS operating at both the QTF
fundamental and 15t overtone

0.9} 2 spectra from detection channel of fundamental frequency (a)
= Dverrone ugnal fer SC0 ppm C M i
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6

4 | @ 1"averionc vibration mode - -

% Combined vibration !..‘

2 %

. 3 -H

. S m
[ 3

2 ﬁ\q‘ s =

730625 730650 730675  7307.00  7307.25

QTF sigml (mV)

Tm (s)

Wavesumber(cm')
® No cross-talk between fundamental and 1% overtone
modes
® Simultaneously dual-gas {e.g C,H, and H,0) detection
@ Future improvements using single-tube resonators
Possible applications are: isotope concentration ratios or NO/H,0O detection for breath sensing

Conclusions and Future Perspectives

»Demonstration of near-IR and THz QEPAS sensor employing custom
QTFs with new geometry and gold contact pattern with improved
sensitivity.
> Realization of a novel single-tube microresonator system
»First-demonstration of QEPAS sensors operating with the 15t overtone
» Dual-antinode excited QEPAS with QTF operating at the 1%
overtone flexural mode
> Dual gas QEPAS with QTF simultaneously operating at the
fundamental and 1% overtone flexural modes

= —— — = = ——————————r |
v’ Implement single tube micro-resonators in dual gas QEPAS

v' Design and realize QTFs with optimized geometry for the 15t overtone
flexural mode
v’ Advance QEPAS based sensor module towards commercialization
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