

Tunable Laser Absorption Spectroscopy (TLAS) for Breath Analysis

- TLAS provides <u>rapid</u>, <u>sensitive</u> and <u>selective</u> concentration measurements of target gases
- TLAS is capable of measuring <u>multiple</u> target gases with a single laser (important for standardizing exhaled breath analysis)
- Pulsed thermoelectrically cooled QC lasers make it possible to design compact, portable and robust TLAS based sensors

Target Gases – 1 (ImmediateBiomarker Candidates)

Molecule	Formula	Concentration in Breath (ppb)	Biological/Puthology indication
Nitric Oxide	NO	6 - 100	Inflammatory and immune responses (e.g., asthma, COPD), vascular smooth massele response
Carbon Monoxide	СО	400 - 3000	Hyperbilirubinemia, smoking response, CO poisoning, vascular smooth muscle response, platelet aggregation, jaundice, diabetes cystic fibrous
Hydrogen Perazide	H ₂ O ₂	1 - 5	Arrway Inflammation, Oxidative stress
Carbonyi Suilide	cos	100 - 1000	Laver disease and acute allograft rejection in lung transplant recipients
Formaldchyde	нсно	400 - 1500	Cancerous tumors, breast cancer

Target Gases -2

Molecule	Formula	Trace Concentration in Breath (ppb)	Biological/ Pathology Indication
Penture	CH ₃ (CH ₂) ₃ CH ₃	4 - 20	Lipid peroxidation, oxidative stress associated with inflammatory diseases, immune responses, transplant rejection, breast and lung cancer
Ethane	C_2H_6	3 - 100	Lipid peroxidation and oxidative stress
Carbon Dioxide isotope ratio	13CO2/12CO2	4 - 5 x 10 ³	Marker for Helicobacter pylori infection associated with peptic ulcers and gastric cancer drug clearances rates
Methane	CH ₄	1000 - 8000	Digestive function, colonic fermentation
Ammonia	NH3	100 - 500	Hepatic encephalopathy, liver cirrhosis, fasting response
Accione	C3H4O	1000 - 5000	Fasting response, diabetes mellitus response, ketosis

Direct Laser Absorption Spectroscopy Absorber Gas, Liquid or Solid Gas, Liquid or Solid (v) = lo · e · a (v) · P, L a(v) - absorption coefficient [cm' atm']; L - path length [cm] v - frequency [cm']; P, partial pressure [atm] a(v) = C S(T) g(v - v_0) C - total number of molecules of absorbing gas/atm/cm³ [molecule cm³ - atm¹] S - molecular line intensity [cm · molecule ¹] g(v · v_o) - normalized lineshape function [cm], (Gaussian, Lorentzian, Voigt)

Key Characteristics of Quantum Cascade Lasers

- Laser wavelengths cover entire range from 3.5 to 66 μm determined by layer thickness of same material
- Intrinsically high power lasers (determined by number of stages)
 - CW:~100 mW @ 80°K, mWs @300 °K
 - Pulsed: 1 W peak at room temperature, ~50 mW avg.
 @ 0 °C (up to 80 % duty cycle)
- High Spectral purity (single mode: <kHz 330MHz)
- · Wavelength tunable by current or temperature scanning
- High reliability: low failure rate, long lifetime, robust operation and reproducible emission wavelengths

Exhaled Nitric Oxide

- "Asthma is a chronic inflammatory disorder of the lower airways..."
 - Working definition (NHLBI, 1995)
- FDA approved for monitoring of a patient's response to anti- inflammatory treatment -Approved April 30, 2003
- Main Applications:
 - Monitoring chronic airway inflammation by longitudinal eNO breath measurements
 - Monitor the effectiveness and compliance of anti-inflammatory therapies

Summary and Future Directions

- **Quantum Cascade Laser based Trace Gas Sensors**
 - Compact, tunable, and robust designs can be realized
 - High sensitivity (<10⁻⁴) and selectivity (3 to 300 MHz)
 - Fast data acquisition and analysis
- Detected trace gases: NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₃OH and isotopic species
- Applications in Exhaled Breath Analysis
- eNO: asthma, and alveolitis (e.g. interstitial pneumonia or idiopathic pulmonary fibrosis)
- ET-CO: neonatal non-hemolytic hyperbilirubinemia
- OCS acute allograft rejection in lung transplant recipients
- · Future Directions
 - Develop advanced compact gas cell for rapid eNO analysis
 Begin clinical studies of exhaled COS analysis

 - Place a robust and portable point-of-care mid-IR laser spectrometer in a clinical setting

