

2010 MIRTHE Summer Workshop, August 1-7, 2010, Rice University, Houston TX

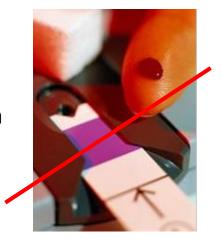
An Optical Breath Sensor Based on a Distributed Feedback Quantum Cascade Laser for Real Time Ammonia Detection

<u>Rafał Lewicki¹</u>, Anatoliy A. Kosterev¹, David M. Thomazy¹, Lei Dong¹, Terence H. Risby², Steven Solga³, Tim Schwartz³, and Frank K. Tittel¹

¹Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 ²Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205 ³St. Luke's Hospital, Bethlehem, PA 18015 email: Rafal.Lewicki@rice.edu

OUTLINE:

- Motivation: Mid-IR QCL sensor for trace gas detection in exhaled breath
- Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) method
- NH₃ sensor architecture
- Performance of the CW Distributed feedback (DFB) QCL
- Performance of the NH₃ sensor and results of real-time human breath data
- Summary


Motivation

Mid-IR quantum cascade laser based sensor for:

• Non-invasive verification of patient medical condition

Sensor requirements:

- High sensitivity and selectivity
- Simple in use and robust
- Breath results available in real time
- Breath samples collected multiple times

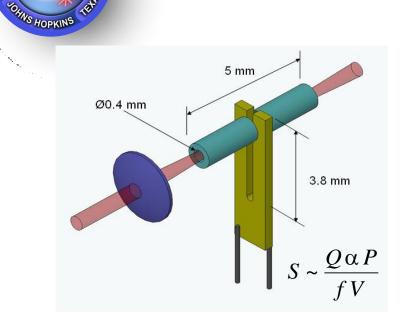
Breath – a marker for diseases

WS HOPKINS

- Exhaled human breath have both:
 - endogenous origin
 - exogenous origin
- The source of endogenous molecules are normal and abnormal physiological processes.
- The sources of exogenous molecules are:
 - inspiratory air,
 - ingested food and beverages,
 - any exogenous molecule that has entered the body by other routes (e.g. dermal absorption) [1]

Exhaled human breath contains ~ 400 different molecules, which can serve as biomarkers for the identification and monitoring of various types of human diseases or wellness states.

1. T.H. Risby, S. F. Solga, "Current status of clinical breath analysis", Appl. Phys. B 85, 421-426 (2006)


Important biomedical molecules

PRINCETON

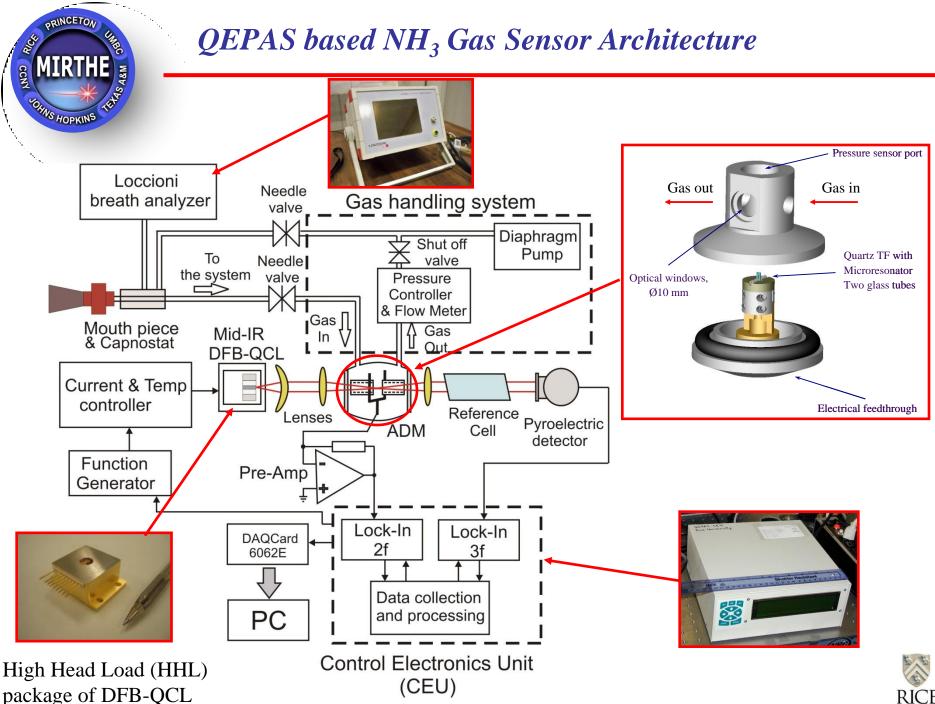
RICE

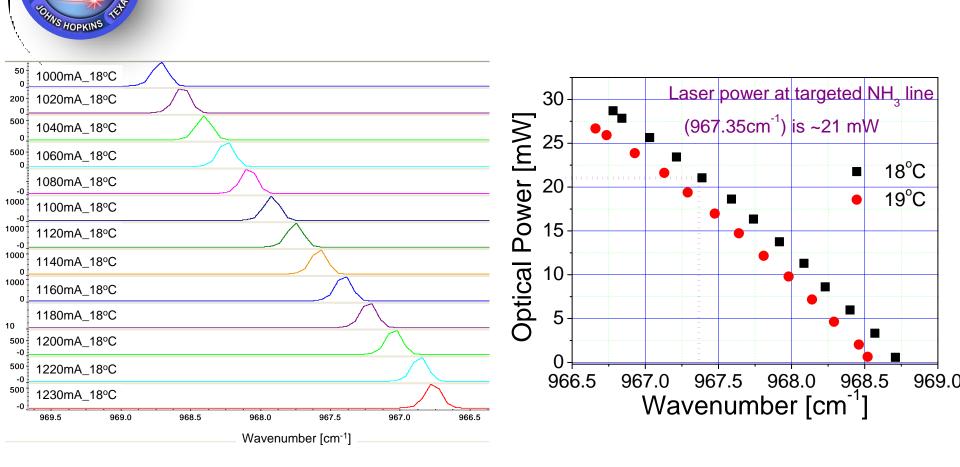
Molecule	Formula	Biological/Pathology Indication	Center wavelengtl [µm]
Pentane	C ₅ H ₁₂	Inflammatory diseases, transplant rejection	6.8
Ethane Rice	C ₂ H ₆	Lipid peroxidation and oxidation stress, lung cancer (low ppbv range)	6.8
Carbon Dioxide isotope ratio	¹³ CO ₂ / ¹² CO ₂	Helicobacter pylori infection (peptic ulcers, gastric cancer)	4.4
Carbonyl Sulfide	COS	Liver disease, acute rejection in lung transplant recipients (10-500 ppbv)	4.8
Carbon Disulfide	CS ₂	Disulfiram treatment for alcoholism	6.5
Ammonia	NH ₃	Liver and kidney diseases, exercise physiology	10.3
Formaldehyde	CH₂O	Cancerous tumors (400-1500 ppbv)	5.7
Nitric Oxide	NO	Nitric oxide synthase activity, inflammatory and immune responses (e.g. asthma) and vascular smooth muscle response (6-100 ppb)	5.3
Hydrogen Peroxide	H ₂ O ₂	Airway inflammation, oxidative stress (1-5 ppbv)	7.9
Carbon Monoxide	СО	Smoking response, lipid peroxidation, CO poisoning, vascular smooth muscle response	4.7
Ethylene RICE	C ₂ H ₄	Oxidative stress, cancer	10.6
Acetone	C ₃ H ₆ O	Ketosis, diabetes mellitus	7.3


Quartz enhanced photoacoustic spectroscopy

PRINCETON

MIRTHE


CCNY


- Miniature size, <3 mm³ detection volume
- Dimensions in <u>mm</u>: length = 3.8, gap size = 0.3, thickness = 0.3, width = 0.58
- Piezo-active material
- Signal currents \approx pA
- Intrinsically high Q factor, ~10,000 at ambient pressure; Qvacuum ~ 125,000
- Optimum micro-resonator tubes are 4.4 mm long (~λ/4<l<λ/2 for sound at 32.8 kHz) and 0.6 mm in diameter
- Maximum SNR of QTF with mR tubes: x30 (depending on gas composition and pressure)

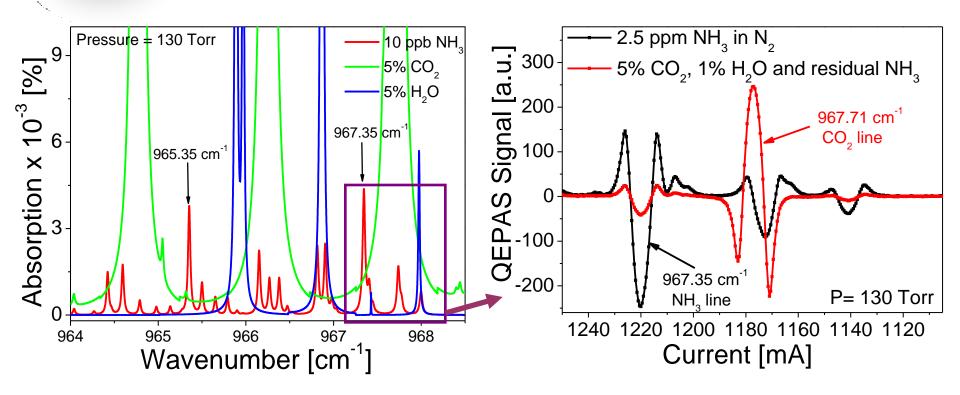
RICE

Performance of the HAMAMATSU 10.34 μm CW DFB QCL

Single mode QCL radiation recorded with FTIR for different laser current values at a laser temperature of 18°C.

PRINCETON

MIRTHE

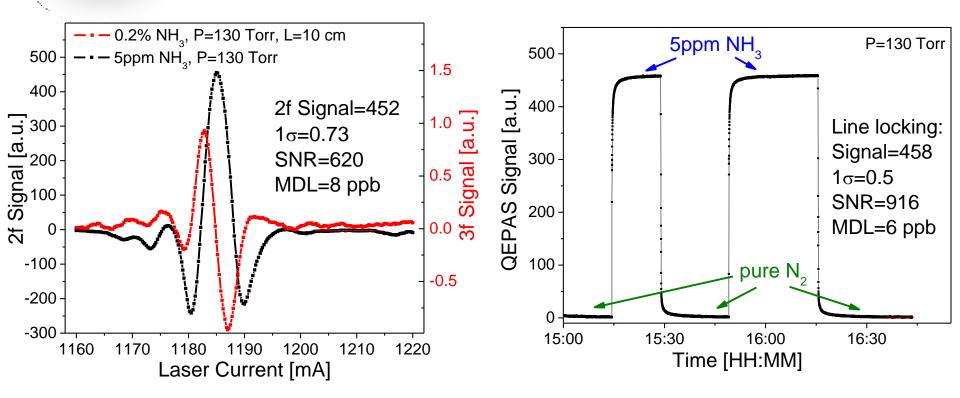

RICE

CONY

CW DFB-QCL optical power and current tuning at two different quasi-RT temperatures.

NH₃ line selection for HAMAMATSU 10.34 μm CW DFB QCL

HITRAN simulated spectra @ 130 Torr indicating two potential NH₃ absorption lines of interest


PRINCETON

MIRTHE

OHNS HOPKINS

CONV

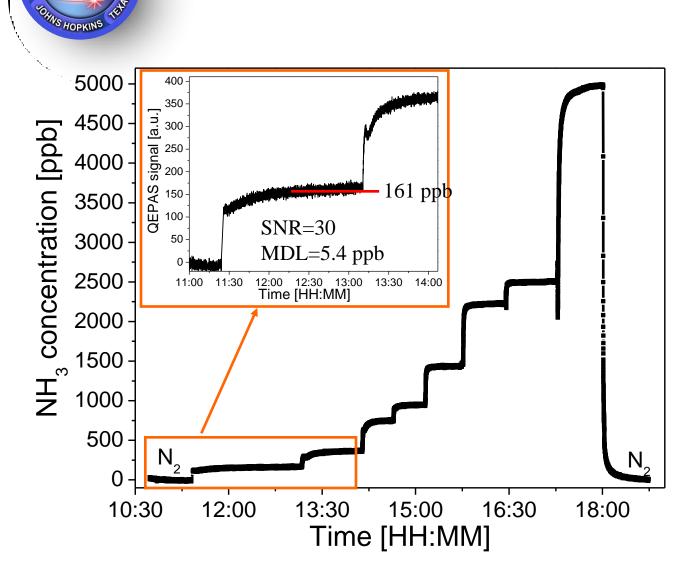
No overlap between NH_3 and CO_2 absorption lines was observed for the selected 967.35 cm⁻¹ NH_3 line. **Results obtained with a DFB-QCL based NH₃ gas sensor**

2f QEPAS signal (black) and reference channel 3f signal (red) when laser was tuned across **967.35** cm⁻¹ line.

PRINCETON

MIRTHE

OHNS HOPKINS


CONY

2f QEPAS signal for 5 ppm NH_3 when laser was locked to the **967.35** cm⁻¹ line.

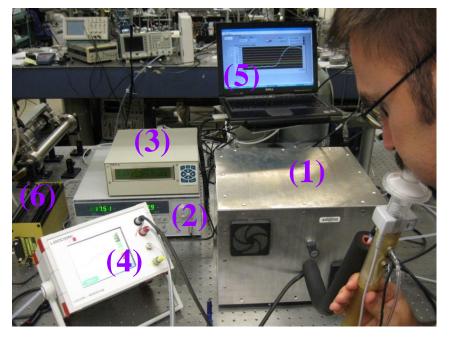
Minimum detectable limiting (MDL) concentration of NH_3 is: ~ 6 ppbv (1 σ ; 1 s time resolution)

Dilution calibration of the 5ppm NH₃ concentration

PRINCETON

MIRTHE

A&M


RICE

CONN

NH ₃ concentration [ppb]		
Targeted	Measured	
5000	4988	
2500	2488	
2280	2232	
1500	1434	
1000	958	
800	746	
400	358	
200	161	

NH₃ breath sensor

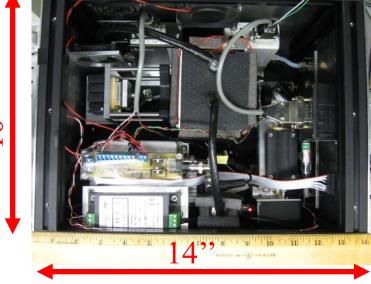
NH₃ sensor system uses:

- NH_3 sensor box (1)
- ILX laser diode controller (2)
- Control electronics unit (3)
- Loccioni breath analyzer (4)
- Laptop (5)

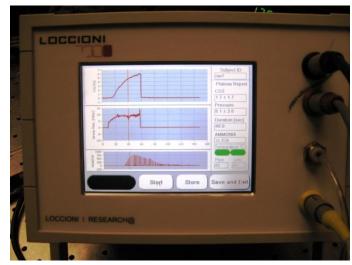
PRINCETON

MIRTHE

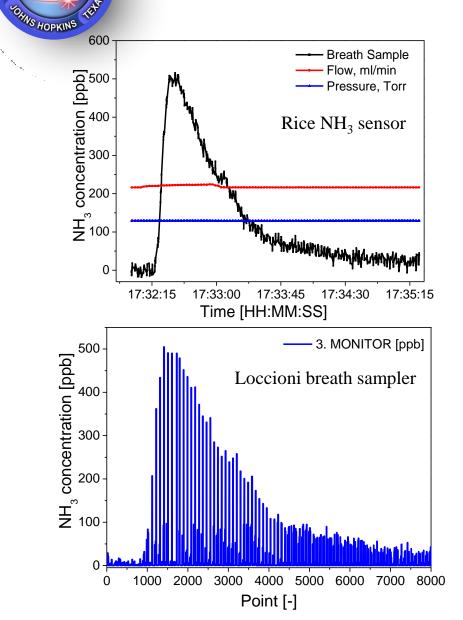
OHNS HOPKINS


4&M

RICE

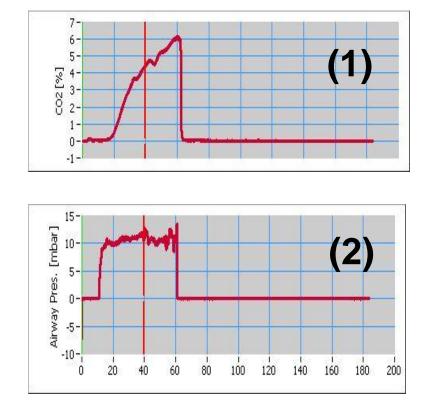

CONY

- Power supply (6) and pump


NH₃ sensor layout closed in a 14" x 10" x 12" box.

Breath analyzer from Loccioni

Real-time human breath data of NH₃


PRINCETON

MIRTHE

4&M

RICE

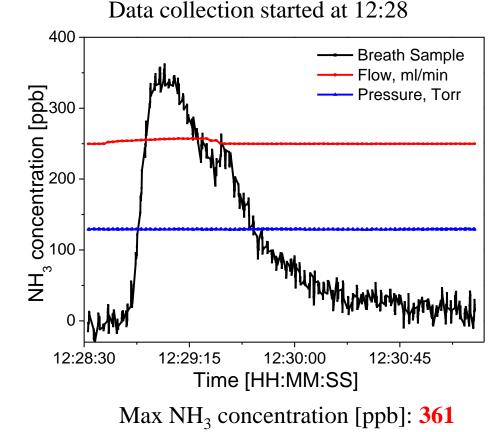
CONY

For each patient, a separate folder is created on the Loccioni memory stick.

Each folder contains:

-excel worksheet with 3 columns data: CO2 [%], Airway pressure [mbar] and Ammonia [ppb] -CO2 [%] plot (1)

-Airway pressure [mbar] plot (2) The Ammonia [ppb] data is not saved as a plot.


Real data for human breath sample after mouth wash

OHNS HOPKINS Data collection started at 12:21 Breath sample 500 Flow, ml/min NH₃ concentration Higgeb hcentration [ppb] 00 0 00 000 000 000 000 Pressure, Torr Data collection started at 12:35 Breath Sample Flow, ml/min Pressure, Torr Twhy Winth 12:23:02 12:23:46 12:2 MM:SS] H₃ concen Max N on [ppb]: **471** 0 12:36:45 12:36:00 12:37:30 12:38:15 Time [HH:MM:SS] Max NH₃ concentration [ppb]: 153

PRINCETON

MIRTHE

CONN

RICE

CONN

- Monitoring of ammonia concentration in exhaled breath using laser spectroscopy techniques provides a <u>fast, non-invasive</u> diagnostic method for patients with liver and kidney disorders, and helicobacter pylori infections (if patient has injected urea and the NH₃ is labeled with ^{15}N).
- Minimum detectable concentration of NH₃ with DFB-QCL based sensor was observed at ~ 6 ppbv (1σ ; 1 s time resolution).
- Fast time response was obtained by keeping sensor enclosure at 38°C to minimize ammonia adsorption effects.
- By using a commercial breath analyzer with built-in capnograph ulletdevice the CO₂ concentration measurements are performed independently.
- Laser spectroscopy with a mid-infrared, room temperature, lacksquarecontinuous wave, high performance DFB QCL is a promising analytical approach for real time breath analysis and the quantification of breath metabolites.

Future goal - Ideal breath analyzer

- Hand–held device
- Fast real–time results
- Accurate Self calibrating
- Sensitive sub ppb detection
- Inexpensive

Dr. Beverly Crusher uses a medical tricorder in 2369.

