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Laser based Chemical Sensor Technology:
Recent Advances and Applications
E
FK Titel, Y Bakhirkin, R F. Curl, A A Kosterev, R. Lewicki,
S Soand G Wysocki

Rice Quantum Institute, Rice University, Houston, TX, USA
http /fece.rice.edu/lasersct/

* Motivation: Wide Range of Chemical Sensing
» Fundamentals of Laser Absorption Spectroscopy
*» New laser sources and sensing technologies

» Selected Applications of Trace Gas Detection
* Detection of formaldehyde and mitric oxide
* Volcanic gas emission studies
= Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)

« Future Directions and Conclusions

Witk azpported by NSF. NASA. DOE. Dol) and Robert Welch Foundaton

International Space Station

Megacity Air Pollution: Houston, TX

Wide Range of Trace Gas Sensing Applications

+ Urban and Industrial Emission Measurements
* Industrial Plants
= Combustion Sources and Processes (e.g. fire detection)
= Automobile, Aircraft and Marine Emissions
* Rural Emission Measurements
s Agriculture & Forestry, Livestock
« Environmental Monitoring
= Atmospheric Chemistry
* Volcanic Emissions
* Chemical Analysis and Industrial Process Control

= Petrochemical, Semiconductor, Nuclear Safeguards,
Pharmaceutical, Metals Processing & Food Industries

» Spacecraft and Planetary Surface Monitoring
= Crew Health Maintenance & Life Support
« Applications in Medicine and Life Sciences
+ Technologies for Law Enforcement and National Security X
- Fundamental Science and Photochemistry RIC
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Trace Gas Monitoring in a Petrochemical Plant

Unwersity of Szeged, Hungary




Popocatepetl, Mexico (December 1994)

Existing Methods for Trace Gas Detection
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Fundamentals of Laser Absorption Spectroscopy

HITRAN Simulation of Absorption Spectra

| Amsorber | Reauirements: Scnsitivity, specifiaily, multi-gas
! dJ species, rapid data Acquisition,
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Mid-IR Source Requirements for Laser Spectroscopy

REQUIREMENTS

Sensitivity (% to ppt)

IR _LASER SOURCE

Wavelength, Power

Selectivity (Spectral Resolution) Single Mode Operation and Narrow
Linewidth

Multi-gas Components, Multiple Tunable Wavelength
Absorption Lines and Broadband
Absorbers

Directionality or Cavity Mode Beam Quality
Matching

Rapid Data Acquisition Fast Time Response

Room Temperature Operation No Consumables

Field deployable Compact & Robust




IR Laser Sources and Wavelength Coverage

Quantum Cascade Laser: Basic Facts

Class 'B'

Class ‘A
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« Semiconductor lasers (lli-V materiais)
= Multiple-quantum-well heterostructure
* Intersubband transitions
* Band-structure ing

defined by the layer thickness — MBE, MOCVD etc.)
. lndependent of material energy bandgap
. ding (each e} N laser
. Numbef of periods N determines laser power
=« High reliability, long lifetime
« Compact
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Key Characteristics of Mid-IR QCLs and ICLs

Wavelength Coverage of IR Detectors

- Laser wavelengths cover the entire Mid-IR range from 3 to
24 um

+ High power ( >500 mW cw, >5W peak for pulsed)

- High spectral purity - single frequency with DFB structure
or external cavity

« Continuous tuning by temperature (~10 cm™') or current
(=1 cm™") or external cavity (>200 cm! ? pulsed mode)

« High reliability: low failure rate, long lifetime and robust

- Capable of room temperature operation
= Pulsed: up to +150°C

= CW: uptoRT
¥
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Motivation for Monitoring of H,CO

» Toxic pollutant due to incomplete fuel
combustion processes

« Potential trace contaminant in industrial
manufactured products ( eg. resins, foam)

» Atmospheric H,CO is a key hydrocarbon
oxidation product which leads to the
photochemical generation of ozone and
release of hydrogen radicals

S

* Medically important gas.
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H,CO Detection in Ambient Air at 3.53 um
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DFG and ICL based H,CO Sensor for studying Urban Air Pollution
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Rice DFG system (2003

H/LO & 0, concentrations e
at Deet Park (2003) :

JPL 3.3 pm cw TEG cooled ICL {2007)  Rice duat ICL system {2006) NCAR DFG system (2007)

Detection of Formaldehyde

Irom PHad deiatess

1
| H,CO- 1ppm
1 metar opbcal path

No significant difference
in line intensity between
the vibrational band v,
(C-O stretch) at 5.7 pm
and bands v, and v,
{C—H stretches) at 3.6 pm

Accessible with QCLs ~ Accessible with ICLs @
RICE

TexAQS II Field Campaign Summer 2006

Dual CW ICL Based Trace Gas Sensor for TexAQS ‘06

» To study ozone formation and
transport, a coordinated field
study was conducted in
August and September 2006
in Houston

* 5 aircraft, two ground
chemistry sites, ~20
periphery and meteorological
sites

+ Participation by~300 L ALUIE Ll

scientists from academia,
national laboratories, industry
| aod government
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Measurement technigue:
* Two CW DFB ICLs
+ 100 m Herriott multipass cell

* Both laser beams co-aligned with a
50/50 beam spiitter

* Two optical channeis and two ‘
detectors:
* Signal
» Reference {quasi line locking)

« Wavelength modutation (2f) b

- Phase sensitive detection at two
different modulation frequencies
{4 lock-in amplifiers, 2 for each Patlicle
channel) .
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MCT Detector |
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Beam
MCT Detovtor 2
i CHO
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| S— Seewes b

Acterence cells

« Concentration measurement by
linear laast squares fitting of the = N s
pre-acquired reference spectrum Automatic seif-calibration

spectrum «Remote operation ICE

{calibration mixture) to the sample = Automatic LN, refilling system 9 @
R

Sensor Performance — Two Channel Detection

Dilution with UHP N, Dilution with 100ppb C,H, in N,
- —————— 41

H,CO concentration (ppb) versus Wind Direction
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Custom mixture:
* ~79 ppb of C,Hg
* ~330ppb of H,CO

* N, as a buffer gas /

= No cross-taik between channels
» C,H, sensitivity:
~150 ppt {10} in 1 sec
= H,CO sensitivity:

~3.5 ppb (1e) In 1 s8C
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Mean H,CO concaniration versus wind
direction at samphing site (conc. in ppbV)
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Ron Brown Ship Track, August 2006

Motivation for Nitric Oxide Detection
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Atmospheric Chemistry
Environmental pollutant gas monitoring

= NO, monitoring from automobile exhaust and
power plant emissions

= Precursor of smog and acid rain
Industrial process control
= Formation of oxynitride gates in CMOS Devices
NO in medicine and biology
» Important signaling molecule in physiological
processes in humans and mammals (1988 Nobel
Prize in Physiology/Medicine)
= Treatment of asthma, COPD, acute lung rejection

NO as a Biomarker

* NOis biochemicallly involved in most
tissues and physiological processes in the
human body

* NO excretion increases in exhaled breath
in lung diseases such as :

v Asthma’

v Chronic Obstructive Pulmonary Disease?
v' Acute lung rejection®

v’ Acute respiratory distress syndrome*

v' Pneumonia (useful for intubated patients)®

Why is Breath so Useful ?
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+ Breath can be analyzed non-invasively from
spontaneously breathing human subjects (neonate to
the elderly), laboratory animals (from mice to horses),
or from intubated patients (in ORs or ICUs).

« Breath can be sampled in the clinic, the home, the
field, at the patient bedside, or in the physician's
office by nurses, technicians, physicians and by the
patient themselves.

= Breath analysis can be used for nutritional studies,
exercise studies, to detect disease, stage disease, to
monitor therapy or to monitor treatment

jhy, s Hophime | piversity.

Dogs Can Smell Cancer

Chronic Obstructive Pulmonary Disease

Insegrative Cancer Therapies (March, 2006) Ch U uorl\ ‘.—““ s
Diagnostic Accuracy of Canine Scent Detection in
Early- and Late-Stage Lung and Breast Cancers

Alae et Kk Tarr

ad Torons Jarwed

By smelling breath samples, dogs detected breast and
lung cancer patienits with accuracies of 88%s and
2 97, respectively

oA}

The evidence 1s clear - gas phase molecules
| are uniquely assoctated with cancer
| We need sensors (hat can detect these biomarkers

Chronic obstructive
pulmonary disease
(COPD)

* Accumulation of
inflammatory products in the
smalt airway lumen and wall

Alveolar NO
= Reflects penpheral lung

inflammation and the
response to anti- Souce N/ Jame se-asen orp v cortens 1A 2017 IR

inflammatory freatment

Not affected by smoking or
inhaled corticosteroids




Curcumin Pilot Study

» Curcumin (Turmeric)
= Polyphenol (diferuloylmethane)
= Anti-inflammatory  _ i
and anti-oxidant

» Hypothesis: Curcumin reduces
indices of inflammation in
individuals with severe COPD

C Dr. Ami

Breath Biomarkers in Humans

As many as 400 different molecules in breath,
many with well defined biochemical pathways

f aroADBAND |
ABSORBERS | [ basis/Pathology Indication
=iy [ Acetaigen; Pob €thanoi metabolism |
qmm pprm Decarborylation of acstoacetats, diabetes
Ammonia [T T liver I gi:
Carbon dioxide | b Product of Hellobacter pylor
Carbon disuifide | ppbi Gut bacteria, schizophrenia
[ Carbon monoxide | ppm | Production cataliyred by herme oxpgrnase |
Carbonyl suifide | pob Gut bacteria, liver disease
thane o Lipid peroxidation and oxidative stresy
— Pt Gut bacteria
| Ethylena pot | Lipld perouldation, oxidative stress, cancer
e { Hydrocarbans | pob_ v xida
| Hyiiregan ppm L Gut Bactena
] Ipograne 7] 7ol iiasyith
Methane [eorm Gut bacteria
e Mathanethicl | pob Mellignine metaboliam
Mathanol of fruit
| Mathylamine | ppo Protein metabolism
itric oxide Lo ion catah
traygen Y Lequired for normal respiration
wsfp-{ Pentane oo Ligd paroxication, oxidative stress
Water % Product of resaration

Terence Risby. Johns Hopkins University

Laser-based ICOS Nitric Oxide Sensor

Online NO concentration msasurements at 3¥min
exhalation.

of ICOS and
chemiluminescence sensor (Slevers — solid line)

NO (ppbv)
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Simulated NO Absorption Spectrum
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—NO Q-branch
{suitable for LMR spectroscopy )
~1876 cm '
—Co, * Absorption lines in the P and
1920 cm ' R branches are stronger and

l therefore more suitable for most

LAS applications
Lutbid

Why is it difficuit to obtain a

{ —HO DFB-QCL at 1876 cm"'?

1 * Fabrication process of a DFB

| | is costly

* Q-branch is very narrow which
additionally requires a higher
1 precision in DFB fabrication

1800 1850 1900 1950

Frequency, cm”'

Volcanic Gas Emission Studies

Volcanological Applications

CO, the most abundant component of
volcanic gases after H,0

d"C is a sensitive tracer of magmuatic
vs. hydrothermal or groundwater
contributions to volcanic gases
Monitoring d"*C can be used in
eruption forecasting and volcanic
hazard assessment




CO, Absorption Line Selection Criteria

« Three strategies:
# Similar strong absorption of '*CO. and '*CO, lines
= Very sensitive to temperature variations
~ Similar transition lower energies

= Requires a dual path length approach to compensate for the large
difference in concentration between major and minor isotopic
species-or-

e Can be realized if different vibrational transitions are selected for
the two isotopes ( 4.35 um for *CO, and 2.76 pm for '°CO,)*

« For the first 2 strategies both absorption lines must lie
in a laser frequency scan window

= Avoid presence of other interfering atmospheric trace
gas species
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> Proposed scheme by Curl Uchara, Kosierey and Tl Oct, 2002

Widely Tunable, CW, TEC
Quantum Cascade Lasers

High resolution CO, absorption spectrum at 2311 cm’!
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Tunable externai cavity QCL based spectrometer, 2006
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* Fine wavelength tuning
» PZT controlled EC-length
* PZT controlled grating angle
* QCL current control
= Motorized coarse grating angle tuning
* Vacuum tight QCL enclosure with build-in 3D lens
posttioner (TEC laser cooling + chilled water
cooling) %.S

RICE

Mid-IR NO Absorption Spectra acquired with a Tunable TEC QCL
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Wide Wavelength Tuning of a 5.3um EC-QCL

Waverumber [cm ']
2000 1980 1960 1940 1920 1900 1880 1060 1840 1820

* Coarse wavelength tuning
of 1565 em! is performed

P e i € s 2 by varying diffraction

o 3 I grating angle

+ Access to Q(3/2) transition
of NO at 1875.8 cm! for
LMR spectroscopy

{muw] somod wondo

G W i, R F Curl F K Tittel, R_Maulini. J Fasl, manuscrot in




High resolution spectroscopy with a 5.3um EC-QCL

« Maode hop free scan of up
to ~2cm-! with a resolution
fem ) <0.001cm! (30MH2) can
be performed anywhere
within the tuning range

HITRAN SIMULATION

W0 160 10 1060 1 1920 1940 1960

Optmurm NG absortpion ina
for simospheric messuraments
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High resolution spectroscopy with a 8.4pm EC-QCL

« Mode hop free scan of up to ~1.25 cm™
with a resolution <0.001cm (30MHz) ¢
can be performed anywhere within the f .
tuning range H
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Performance of a 8.4 um EC-QCL spectroscopic source
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Further development of the EC-QCL technology

* Broader wavelength tunability
* Faster tuning speed
* All Solid state designs

* MEMS e

= All electrical tuning (in collaboration with QCL-research groups)
- Tunable Distributed Bragg Reflectors (DBR)
(camer-induced refractive index tuning)
- Electronically tunable extraordinary
transmission gratings (tunable mirrors and
ﬂlters) (work presently carried out at Princeton)

Quartz Enhanced
Photoacoustic Spectroscopy

First Report of PAS in 1880

Alexander Graham Bell's “photophone™ used a voice coll to modulate a mirror

which transmitted sunhght to a ct a resistor ’
Nature, Sept. 23, 1880, pp. 500-503 *3

RICE




From conventional PAS to QEPAS

Laser beam, g>>1000
power P A /—\ Celi is OPTIONAL!
i .f"__-.r:“. - ALY, (1
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Meodulated WD) 0
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or fi2
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z
quality factor Q %:@
° RICE

Quartz tuning fork (TF) as a resonant microphone

= Resonant frequency f=32 8 kHz
* Imnnsically high Q factor O, ype ~ 125 000,
(,,~10 000 31 ambient conditions,

= Piezoclectnic: requires no transducer
= Minmiature size
*+ Mass produced for clocks — low cost

Quartz Tuning Fork based Spectrophone

Quartz Tuning Fork based Spectrophone

Equivalent Electrical Circuit of a Quartz TF

Typical QTF Resonance Curves
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“QUARTZCRYSTAL RESONATORS AND OSCILLATORS For Frequency Cotrel and Timing
Applicatiom™, tuterial by Joha R. Vig. U5 Army Communications-Electronics Corumand (July 1601)
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Comparative Size of Absorbance Detection Modules (ADM)

Optical multpass cell (100 m)
1=70 cm, F~3000 cm’

Resonant photoacoustic cell {1000 Hz)
[~60 cm, 1-50 cm?
»

QEPAS spectrophone:
I~1 cm, I-0.05 cm'

Motivation for NH; Detection

Monitoring of gas separation processes
Spacecraft related gas monitoring

Monitoring NH, concentrations in the exhaust
stream of NO, removal systems based on
selective cata’iytic reduction (SCR) techniques

Semiconductor process monitoring & control
Monitoring of industrial refrigeration facilities
Pollutant gas monitoring

Atmospheric chemistry

Medical diagnostics (kidney & liver
dysfunctions)

B e
R
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Simulated Infrared NH; Absorption Spectra

QEPAS based Gas Sensor Architecture
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i ADM
= Ophonal
miror

< Data collection
and processing

NH; Measurements at an Oklahoma State
University Research Feedyard

2v; Absorption Band of CH, (HITRAN)
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Motivation for Monitoring of
Freon 125 and acetone

ICL based Quartz-Enhanced Photoacoustic Gas Sensor|

* Freon 125 (C,HF;)
= Refrigerant (leak detection)

= Safe simulant for toxic chemicals e.g.
chemical warfare agents

* Acetone (CH;COCH,)
= Recognized biomarker for diabetes

Germarnium

Gas handling systam

R Lewichi, G Wisshi, AA. Kosterev_ F K Tilel GEPAS based detection of brosdband Q\i
sbeorbng molecules uemg & widely Linable, cw Guentum cascade laser al 8.5 m”

submitted to Opbes Express. Apnl 2007 RICE

Spectroscopy of Broadband Absorbers with
Widely Tunable EC-QCL at A = 8.4 um

QEPAS ethanol spectrum between 1825 & 1980 cm!

Laser powser nomalized

QEPAS signal [VAV)

QEPAS concentralion measuroment of
aFreon 125 and acelone mudure

M I reon 125+ Acwone
Freon 128 reneved
tatneved

QEPAS concaniration measurement of
Freon 125 {5ppm mixiute in N,)

S ol FrountZi NN, mammired apecrum
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* Minimurm detection limit (1) of * Wide tunability enables excellent
~4.5 ppb was obtained for
molecular selectivity for broad
Freon 125 with an average laser band absorbers g
power of 6.6 mW
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Reference spectrum from the PNNL spectral dutabase (red line). Sharp features
on the cthanol pond to the ic waler i ion lines %
»

(bluc line depicts water absorption spectrum simutated using HITRAN database) RICE

Merits of QEPAS based Trace Gas Detection

QEPAS Performance for 11 Trace Gas Species (June’07)

High sensitivity (ppm to ppb gas concentration levels) and
excellent dynamic range

Immune to environmental noise- acoustic quadrupole
Ultrasmall sample volume (< 1 mm?)

Applicable over a wide range of temperatures and
pressures, including atmospheric pressure

Sensitivity is limited by the fundamental thermal TF noise:
kgT energy in the symmetric mode is directly observed

Rugged and low cost compared to other spectroscopic
techniques that require infrared detector(s)

Sensitive to phase shift introduced by V-T relaxation
processes — additional selectivity

Potential for trace gas sensor networks
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Matecule (Hest) Frequency, | Fresure, | SNEA, | Pewer, | NEC(w=ls),
em? Torr | em*Wiir® | mw ppmy
HO(N)™ 306,75 60 19107 9.5 o0
[VICS (el 50% RH® | 6599 11 3 310 50 w6
Gl (N 63517 ] 300 ] 006
NH S 65376 0 3410 3 030
CH(N" TR 950 ECH A T =]
[} 636155 50 T6 107 | % 410
T, (N 1.5% N30) © 99136 30 T30 | 44 ™
[CRONGTS% R | 28090 7S 3710 72 [¥H
CONY 219%.66 30 33107 [ X
CO (propylene) 2196.66 50 T4 3 01
N0 (air+5%SF,) 2195.63 30 (EN [ T
CHOR ™ 19332 ) FERTTLE BT %0
CiHIF; (Frean 1257 120862 k] 6 W00 | 66 000

mpror o microrssonator
rpron od microremmator st doubic optical pase through ADM
With empli o and metal i

NNEA i ion cocffici
NEC - nossc ouquiv alent concentraion for aveilablc lascr power nd T+l time constast,

For comparison: conventional PAS 2.2x10* cm'W/VHz (1,800 Hz) for NH,*
*ALE Webber et al, Appl Ope. 42, 21192126 (2008)
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Future of Chemical Trace Gas Sensing

Existing Environmental Trace Gas Networks

*  Fluxnet (pictured) (Oak Ridge National Laboratory)
Lt vy e gon LU NN

= Carbon tracker (National Oceanic and Atmospheric Administration}
e Cw o gl eag g cariwwsmcker

+ National Ecological Observatory Network (NEON] (National Science
Foundation
it TN I org

*  Rely on sparse data (due 10 cost/size of sensors) or satellite data
«  Deploy with other types of sensors (¢ g. wind)

H,CO concentration (ppb) versus Wind Direction

Wireless Sensor Networks for Gas Sensing

Meoan H,CO concentration versus wind
.. direction af sempling sil# (conc in ppbV)

[MajoremyienesoumlnHamsCoumyl
" L]
- vl b Lol )
- e
Pyl -
.:f ..
IJ'I.. 1 rﬂ-—-

Max H,CO concentration versus wind
direction at sampling site {conc. in ppbV)

= Each point called “mote”

v — \" * Advantages?

= Spatial resolution
|
| = Measure fluxes
' ‘ * What is needed?
’ = Low power

—_— * Low cost
* Ultra miniature
l = Replicable
* Autonomy

5

=
@

To Intemel via
Base-station ™)

Summary & Future Directions of mid-IR Sensor Technology

0.2W control system power consumption
Small size
Relatively low cost

High power
PWM Peitler cooler driver
Projected sensitivity* to CO, 110 ppm with 1sec. lock-in TC
Over 10? improvement in sensitivity @4.2um

“G Wysecki. A, A. Kosterevand F ., Trel *Iflusnce of Molecular Relaxation Dynamscs on Quartz:
ahenced Photnscousc Detection of CO. ol | = 7 i 85,303.308

* Semiconductor Laser based Trace Gas Sensors
= Compact, tunable, and robust
= High sensitivity (<104) and selectivity {3 to 500 MHz)
* Fast data acquisiion and analysis
* Detected 12 trace gases to date: NH,, CH,, N,0, CO;, CO, NO, H,0, COS,
C,H.. S0, CH,0H, C,HF, and several isotopic species of C, O, N and H
New Applications of Trace Gas Detection
= Distril sensor for Envit
N;0, CO,and H,CO)
= Inexpensive and sensitive sensors for industrial process control and chemical
analysis (HCN, NO, NH,, H,0)
= Wearable sensors for Medical & Biomedicat Diagnostics {(NO, CO, COS, CC,,
3, CH,
= Hand-held sensors and sensor network ies for Law and
Homeland Security
* Future D ( and C
= Improvernents of the existing sensing technologies using novel,
thermoelecirically cooled, cw, high power, and iy wavelength tunable mid-
IR and i cascade lasers
New applications enabled by novel broadly wavelength tunable quantum
cascadpgm : L of

lasers
absorbers, in particutar VOCs and HCs)
Development of optically multiplexed gas sensor networks based on QEPAS zg

RICE

{NH,, CO, CH,, CH,,
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FT-IR survey absorption spectrum Proposed H,'®0/ H,'%0 Isotopic Ratiometer Scheme

of benzene vapor (C¢Hg)

Atmospheric absorption spectrum
"“‘\]f—_—“‘“\. ff’| {_.
€O, band m\’nw‘ '
H,0 band
Benzene spectrum €O, band
!

| { V"

Linear scale (a.u.)

Va

T T 4 T
500 750 1000 12‘50 1500 1750 20’00 22‘50 2500

Wave number (cm") bg fg
W Chen, - Cazser, K. Tirtel and D Boucher. Appl. Optics 39. 6238. 2000 RICE RICE




