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Abstract

Efficient, ultra- narrow spectral output from an electron -beam excited XeF(C +A) laser
medium has been achieved by injection controlled tuning. Using a two- component buffer gas
comprised of Ar and Kr, XeF(C +A) laser pulse energy and intrinsic efficiency values compa-
rable to those of UV rare gas -halide lasers have been demonstrated. For a 482.5 nm injec-
tion wavelength that is well matched to the XeF(C +A) gain maximum, output energy density and
intrinsic efficiency values of approximately 8 J /liter and 6% were achieved.

Introduction

The XeF(C +A) excimer transition is unique among those of the rare gas -halide (RGH) class
because of its blue -green wavelength and exceptionally broadband fluorescence spectrum.
Recent advances indicate that the electrically excited XeF(C +A) medium has considerable
potential for development as an efficient, optical source that is tunable throughout the
entire blue -green region of the spectrums. In this paper we report on our efforts to capi-
talize on these characteristics by injection control of an XeF(C +A) amplifier. The injec-
tion source used was a dye laser tunable throughout the entire blue -green spectral region
and having a spectral width of only 0.001 nm. In addition, we have demonstrated the merits
of using two rare gas components to form the buffer gas. Notable success has been realized
using an Ar -Kr combination to form the high pressure buffer for the XeF(C +A) laser medium2.
This approach has resulted in a dramatic improvement in the net gain of the broadband
XeF(C +A) transition centered at - 480 nm. Indeed, laser pulse energy density and intrinsic
efficiency values have been demonstrated that compare very favorably with those of the more
highly developed UV RGH B +X lasers, by using the XeF(C +A) medium either as a broadband
oscillator, or as a wavelength selectable amplifier.

Experimental details

The experimental apparatus used in this work is illustrated in Figure 1. A Physics
International Pulserad 110 electron beam generator was used to transversely excite high
pressure gas mixtures1'2. The electron beam energy was 1 Mev, and the excitation pulse
duration was 10 nsec (FWHM), producing a pump energy density of - 135 J /liter, as measured
by a calorimeter and Faraday cup probe. The stainless steel reaction cell was carefully
passivated by prolonged exposure to F2. High purity gas mixtures comprised of NF3, F2, Xe,
Kr and Ar were used. Good gas mixing of the components was found to be essential, and was
obtained using turbulent flow of the high pressure gas components into the reaction cell.
Each fresh gas mixture could be used for about 10 shots before performance degradation
became significant.

Injection control system

An excimer -pumped dye laser system (Lambda Physik Model EMG 101E/FL2002) having a band-
width of - 5 x 10 -3 nm was used to provide injection controls. Use of an intracavity etalon
resulted in significant additional bandwidth reduction to 9 x 10-4 nm. This seed oscillator
delivered an output of up to 8 mJ in a 10 nsec pulse (FWHM), tunable from 430 nm to 550 nm
using Coumarin dyes 2, 102 and 307. A telescope was used to reduce the injection beam diam-
eter so that most of the available dye laser pulse energy entered the unstable cavity of the
e -beam pumped cell (Figure 1).
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The temporal evolution of the free running laser, the dye laser and the injection con-
trolled XeF(C +A) laser output, illustrated in Figure 2, were monitored by a fast vacuum
photodiode detector [ITT -F4000 (S5)]. Neutral density filters were used to avoid saturation
of the photodiode and color glasses were used to define the spectral region of interest.
Signals were recorded by a Tektronix R7912 transient digitizer. The time resolution of the
entire system was better than 2 nsec. The temporally integrated, spectrally resolved laser
signal was recorded by an optical multi- channel analyzer (OMA III), using a Jarrell -Ash 0.25
meter spectrometer having a spectral resolution of about 0.3 nm. Additionally, the temporal
relationship of the dye laser and a -beam pulse was monitored by a storage oscilloscope. The
timing relationship between the dye laser and e-beam was adjusted by timing circuits so that
the volume filling pass of the injected dye laser pulse overlapped the rise of the XeF(C +A)
temporal gain profile.

Cavity optics

The optical cavity used in these studies was a positive- branch confocal unstable,
intracell resonator, consisting of a concave end mirror with an injection hole of 1.5 mm
diameter and a coating having a high reflectivity in the blue -green region, and a convex
output coupler (Figure 1). The mirrors, having focal lengths of f2 and -fl, respectively,
were separated by a distance L = f2 - fl, typically about 12 cm for our conditions, with the
magnification given by the relation, M = f2 /fl. Various cavities were examined having
magnifications ranging from 1.05 to 1.231. The output coupler was a meniscus lens of zero
refraction power having a highly reflective coated spot on the convex side with a diameter,
d, of 1.4 cm. The active region was a cylindrical volume defined by the e-beam pumping
length (10 cm) and the clear aperture having a diameter d x M cm. For these conditions the
role of the cavity was to serve as a beam expanding telescope of a regenerative
amplifier1,3.

XeF(C +A) gain profile

The addition of Kr to XeF(C +A) laser mixtures has been found to result in a significantly
improved gain profile when e -beam excitation is used2r4. Presented in Figure 3 is the
measured temporal evolution of the net gain for representative XeF(C +A) laser mixtures with
and without Kr. The fractional concentrations of each constituent of the Ar- Xe- NF3 -F2 mix-
ture are optimized and result in broadband extraction energy density values typically in the
1.0 -1.5 J /liter range when a free running stable resonator is used. However, Figure 3

vividly illustrates the significant reduction in the initial absorption and the increase in
peak gain when Kr is added to the mixture and all constituent fractional concentrations are
re- optimized. The improved gain profile typical of Kr- containing mixtures has been found to
increase the broadband output energy and intrinsic efficiency of a stable, free running
oscillator to levels comparable to those of the UV XeF(B +X) transition4. The wavelength
dependence of the peak values of gain and initial absorption for mixtures with and without
Kr are presented in Figure 4.

Wavelength tuning

In order to determine the range within which the XeF(C +A) medium can be efficiently
tuned, the wavelength of the injected dye laser pulse was varied from 435 nm to 535 nm.
Figure 5 provides an illustrative comparison of the spectra of several, separate injection
controlled shots and a free running oscillator spectrum, along with the XeF(C +A) fluores-
cence spectrum. Because of the large cavity loss associated with the unstable resonator
optics used, the maximum free running output energy was always less than 0.1 mJ for these
conditions. However, several mJ of amplified output was obtained for injection wavelengths
as low as 459.4 nm and as high as 505 nm. In fact, amplification of the injected signal was
observed for wavelengths as low as 435 nm and as high as 535 nm.

Presented in Figure 6 is the measured output energy as a function of wavelength for sev-
eral different cavities, along with a typical free running spectrum for comparison. The
specific injection wavelengths were chosen to correspond to the peaks and absorption valleys
that are always apparent in the free running XeF(C +A) laser spectrum. This figure shows
that the wavelength dependence of the minima observed in the amplified output correlates
reasonably well with the locations of the absorption valleys in the free running spectrum.
The discrete absorption is due primarily to phototransitions from Xe(3P2, 3P1) atoms to
higher Rydberg levels.

SPIE Vol. 710 Excimer Lasers and Optics (1986) / 139

The temporal evolution of the free running laser, the dye laser and the injection con­ 
trolled XeF(OA) laser output , illustrated in Figure 2, were monitored by a fast vacuum 
photodiode detector [ITT-F4000 (S5)]. Neutral density filters were used to avoid saturation 
of the photodiode and color glasses were used to define the spectral region of interest. 
Signals were recorded by a Tektronix R7912 transient digitizer. The time resolution of the 
entire system was better than 2 nsec. The temporally integrated, spectrally resolved laser 
signal was recorded by an optical multi-channel analyzer (OMA III), using a Jarrell-Ash 0.25 
meter spectrometer having a spectral resolution of about 0.3 nm. Additionally, the temporal 
relationship of the dye laser and £-beam pulse was monitored by a storage oscilloscope. The 
timing relationship between the dye laser and e-beam was adjusted by timing circuits so that 
the volume filling pass of the injected dye laser pulse overlapped the rise of the XeF(OA) 
temporal gain profile.

Cavity optics

The optical cavity used in these studies was a positive-branch confocal unstable, 
intracell resonator, consisting of a concave end mirror with an injection hole of 1.5 mm 
diameter and a coating having a high reflectivity in the blue-green region, and a convex 
output coupler (Figure 1). The mirrors, having focal lengths of f 2 and -f l , respectively, 
were separated by a distance L = f 2 ~ f^t typically about 12 cm for our conditions, with the 
magnification given by the relation, M = f 2 /f 1 . Various cavities were examined having 
magnifications ranging from 1.05 to 1.23 1 . The output coupler was a meniscus lens of zero 
refraction power having a highly reflective coated spot on the convex side with a diameter, 
d, of 1.4 cm. The active region was a cylindrical volume defined by the e-beam pumping 
length (10 cm) and the clear aperture having a diameter d x M cm. For these conditions the 
role of the cavity was to serve as a beam expanding telescope of a regenerative 
amplifier l ' 3 .

XeF(C-»-A) gain profile

The addition of Kr to XeF(C-»-A) laser mixtures has been found to result in a significantly 
improved gain profile when e-beam excitation is used 2 ' 1*. Presented in Figure 3 is the 
measured temporal evolution of the net gain for representative XeF(OA) laser mixtures with 
and without Kr. The fractional concentrations of each constituent of the Ar-Xe-NF3 -F 2 mix­ 
ture are optimized and result in broadband extraction energy density values typically in the 
1.0 -1.5 J/liter range when a free running stable resonator is used. However, Figure 3 
vividly illustrates the significant reduction in the initial absorption and the increase in 
peak gain when Kr is added to the mixture and all constituent fractional concentrations are 
re-optimized. The improved gain profile typical of Kr-containing mixtures has been found to 
increase the broadband output energy and intrinsic efficiency of a stable, free running 
oscillator to levels comparable to those of the UV XeF(B+X) transition 1*. The wavelength 
dependence of the peak values of gain and initial absorption for mixtures with and without 
Kr are presented in Figure 4.

Wavelength tuning

In order to determine the range within which the XeF(C-»-A) medium can be efficiently 
tuned, the wavelength of the injected dye laser pulse was varied from 435 nm to 535 nm. 
Figure 5 provides an illustrative comparison of the spectra of several, separate injection 
controlled shots and a free running oscillator spectrum, along with the XeF(OA) fluores­ 
cence spectrum. Because of the large cavity loss associated with the unstable resonator 
optics used, the maximum free running output energy was always less than 0.1 mJ for these 
conditions. However, several mJ of amplified output was obtained for injection wavelengths 
as low as 459.4 nm and as high as 505 nm. In fact, amplification of the injected signal was 
observed for wavelengths as low as 435 nm and as high as 535 nm.

Presented in Figure 6 is the measured output energy as a function of wavelength for sev­ 
eral different cavities, along with a typical free running spectrum for comparison. The 
specific injection wavelengths were chosen to correspond to the peaks and absorption valleys 
that are always apparent in the free running XeF(C+A) laser spectrum. This figure shows 
that the wavelength dependence of the minima observed in the amplified output correlates 
reasonably well with the locations of the absorption valleys in the free running spectrum. 
The discrete absorption is due primarily to phototransitions from Xe( 3 P 2 , 3 P l ) atoms to 
higher Rydberg levels.

SPIE Vol. 710 Excimer Lasers and Optics (1986) / 139

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Output energy and efficiency

For the conditions of Figures 5 and 6 the e -beam energy deposition was measured and found
to be approximately 135 J /liter, a value consistent with calculated and measured values of
medium properties5. Since the active volume defined by the mirror spacing and magnification
values varied from 16.8 cm3 to 20.4 cm3 for our conditions, the maximum 149 mJ output
obtained at 482.5 nm (Figure 6) corresponds to an energy density of - 8 J /liter and an
intrinsic efficiency of approximately 6 %. On a volumetric basis these values are actually
higher than those typical of room temperature XeF(B+X) laser operation, and are comparable
to XeF(B +X) performance at the 450 °K temperature found to be optimum for that laser6r7.
This is rather surprising in view of the fact that the C +A quantum efficiency is - 25% less
than that of the B +X transition. However, because of the strongly repulsive nature of the
XeF(A) state, the C +A laser does not suffer from lower level population buildup as is the
case with the B +X laser. Additionally, the 6.5 atm Ar -Kr buffer mixture used in the present
work results in B -C state mixing and vibrational relaxation times of approximately 0.1 nsec,
which are very much less than those typical of optimum B +X laser mixtures using Ne as the
buffer at pressures of - 3 atm. Since both lower level buildup and slow vibrational relax-
ation can adversely affect XeF(B+X) laser energy and efficiency, apparently the XeF(C+A)
medium has advantages in this regard, provided the level of broadband transient absorption
is controlled kinetically and the characteristically slow build -up of optical flux that
usually limits oscillator performance is overcome by using the C +A medium as an
amplifier.

Bleaching of absorbers

In addition to the effects described above, bleaching of transient absorbing species
exerts an exceptionally strong influence on XeF(C+A) laser performance, an effert that
appears to be relatively of little importance in B +X rare gas -halide lasers. Presented in
Figure 7 are the cross sections for stimulated emission of the XeF(C+A) transition and those
of several rare gas -halide B +X transitions, along with the absorption cross sections of
several transient species typical of rare gas -halides laser mixtures. Because the cross
sections for the dominant blue -green absorbing species5 are larger than the cross section
for stimulated emission of the XeF(C+A) transition, and since the saturation fluxes are
comparable, bleaching of the transient absorption is a very significant effect for the high
intracavity flux levels typical of the present experiment. Further, there appear to be no
non -saturable absorbers in the XeF(C+A) laser mixture. In contrast, the B +X stimulated
emission cross sections are much larger than the UV absorption cross sections of transient
species. Thus, while it is much easier to achieve higher gain on the B +X transitions, the
presence of non -saturable transient absorption imposes a limit on B +X laser extraction effi-
ciency.

Effects of Kr

Detailed spectral analysis of various gas mixtures with and without Kr led to the conclu-
sion that the primary effect of Kr addition to XeF(C+A) laser mixtures was a significantly
lower level of transient absorption in the blue -green spectral region`'. However, there is
also evidence of additional factors that benefit XeF(C+A) laser performance2, including:
(1) faster mixing of the XeF B and C states; (2) a contribution to the net gain in the 400-
450 nm region due to the presence of a high concentration of the Kr2F excimer; and (3) a
large increase in absorption at UV wavelengths, also due to Kr2F, which suppresses oscilla-
tion on the competitive XeF(B+X) transition and, for certain conditions, makes possible
relatively efficient, simultaneous oscillation of the XeF(B+X) and XeF(C+A) laser transi-
tions.

Presented in Figure 8 is the time integrated fluorescence in the 300 -600 nm region for
representative XeF(C+A) laser mixture conditions. This figure shows clearly the contri-
bution due to the presence of the Kr2F excimer. The fact that the XeF(C) and Kr2F popula-
tions are comparable2 in XeF(C+A) mixtures containing Kr suggests that Kr2F may be making a
contribution to the gain on the short wavelength side of the laser spectrum. However, the
broader spectral width, longer natural lifetime, and shorter wavelength of Kr2F compared to
XeF(C+A) results in a stimulated emission cross section that we estimate to be only - 2.5 x
10 -18cm2 at its peak at 400 nm, a value approximately one fourth that of the XeF(C+A) tran-
sition. Thus, any influence of Kr2F on the gain for wavelengths 5 480 nm must be quite
small.
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Other factors also have to be considered, however. Figure 9 presents the temporal evolu-
tion of both the Kr2F and XeF(C+A) fluorescence spectra, showing that the peak in the Kr2F
fluorescence precedes that of XeF(C+A) by 15 -20 nsec. Therefore, even though its stimulated
emission cross section is small, a large Kr2F population favors an earlier buildup of gain
for wavelengths to the short wavelength side of the XeF(C +A) gain maximum. For example,
based on the data of Figures 8 and 9 we estimate that the Kr2F contribution to the peak gain
at - 450 nm could be as high as 10 -20 %. Such an effect could be significant when the C +A
gain medium is used as a wavelength tuned amplifier. This line of reasoning suggests that
any increase in the gain of the XeF(C+A) laser medium due to the presence of Kr2F should be
observable only on the short wavelength side of the laser spectrum. In fact, comparison of
free running laser spectra for Ar and Ar -Kr buffered mixtures shows a - 50% greater increase
in the XeF(C+A) laser intensity around 470 nm than at 490 nm when Kr is added.

Simultaneous UV /visible laser oscillation

Although more than 95% of the total XeF(B,C) population resides in the C state for the
conditions of present interest, since the stimulated emission cross section for XeF(B+X) is
3 - 4 x 10- 16cm2, the intense pumping required to produce adequate XeF(C+A) net gain usually
results in even larger transient gain at the XeF(B+X) 351 nm wavelength. Thus, even though
steps can be taken in the design of the C +A cavity to minimize the possibility of B +X oscil-
lation, the B +X gain is frequently so high that amplified stimulated emission of the B +X
transition occurs thereby depleting the gain on the desired C +A transition. We capitalized
on this characteristic in order to demonstrate the feasibility of simultaneous UV /visible
laser oscillation on both the B +X and C +A transitions of the XeF excimer2. A cavity opti-
mized for laser oscillation at 351 nm and at 480 nm was used. The cavity was comprised of a
mirror having nearly total reflectivity in the UV and blue -green regions, and a multiple
coating outcoupler having a transmission of 20% at - 350 nm and 10% between 460 and 510 nm.
Figure 10 presents the measured laser pulse energy densities for the UV and blue -green tran-
sitions of XeF as a function of Kr pressure, obtained using this dual wavelength cavity for
conditions otherwise similar to those described previously. With no Kr in the mixture and
using a C +A cavity alone, previously these conditions resulted in C +A laser pulses having an
energy density of approximately 1 J /liter4. However, Figure 10 shows that when the opti-
mized dual -wavelength cavity is used, no C +A laser oscillation is observed in the absence of
Kr, but the B +X transition oscillates with an output pulse energy density of - 1 J /liter, a
relatively high energy density level considering that the mixture used is very different
from that found to be optimum for the XeF(B+X) laser,6r7. Addition of Kr results in an
immediate decrease in B +X output, followed by simultaneous oscillation of the UV and visible
transitions, and eventually C +A oscillation alone for Kr pressures above - 300 Torr.

UV absorption

The decrease in B +X laser energy (Figure 10) upon addition of Kr is the result of a
reduction in the XeF(B) population relative to that of XeF(C)2, and, perhaps more signifi-
cantly, because of the liklihood of a strong increase in absorption at - 351 nm due to the
presence of Kr2F. The Kr2F population estimates based on the data of Figures 8 and 9 indi-
cate that a Kr partial pressure as low as 50 Torr is likely to result in a very significant
Kr2F contribution to absorption at 351 nm. We feel that this is the primary cause of the
decrease in XeF(B+X) laser output as Kr is added (Figure 10). This trend continues as Kr
pressure is increased and for Kr pressures above about 150 Torr, for which the presence of
Kr results in a reduction in absorption in the blue -green region2'4, significant laser
output is obtained from the C +A transition. For Kr pressure between about 150 -250 Torr
combined UV /visible output in excess of 0.5 J /liter is obtained using the cavity optimized
at both the B +X and C +A wavelengths, corresponding to an intrinsic efficiency of - 0.4 %.
However, as the Kr pressure is increased above - 300 Torr, for which optimum C +A performance
has been demonstrated2,4, the B +X output decreases to a very low level. For this condi-
tion the beneficial influence of Kr on C +A laser performance is at its maximum, while the
peak absorption at 351 nm due to Kr2F is estimated2 on the basis of the Kr2 absorption cross
section to be on the order of 10% cm-1. In view of the fact that the cavity used for this
demonstration was specifically designed to support XeF(B+X) oscillation (Figure 10), we
interpret these results as strong evidence that the two component Ar -Kr buffer used to opti-
mize XeF(C+A) laser performance alone, when used with C +A optics, significantly reduces the
possibility of competitive oscillation on the parasitic B +X transition, a particularly
important consideration for the design of efficient XeF(C+A) lasers.
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for wavelengths to the short wavelength side of the XeF(OA) gain maximum. For example, 
based on the data of Figures 8 and 9 we estimate that the Kr 2 F contribution to the peak gain 
at ~ 450 nm could be as high as 10-20%. Such an effect could be significant when the OA 
gain medium is used as a wavelength tuned amplifier. This line of reasoning suggests that 
any increase in the gain of the XeF(OA) laser medium due to the presence of Kr 2 F should be 
observable only on the short wavelength side of the laser spectrum. In fact, comparison of 
free running laser spectra for Ar and Ar-Kr buffered mixtures shows a ~ 50% greater increase 
in the XeF(OA) laser intensity around 470 nm than at 490 nm when Kr is added.

Simultaneous UV/visible laser oscillation

Although more than 95% of the total XeF(B,C) population resides in the C state for the 
conditions of present interest, since the stimulated emission cross section for XeF(B+X) is 
3 - 4 x 10" l6cm 2 , the intense pumping required to produce adequate XeF(OA) net gain usually 
results in even larger transient gain at the XeF(B+X) 351 nm wavelength. Thus, even though 
steps can be taken in the design of the OA cavity to minimize the possibility of B+X oscil­ 
lation, the B+X gain is frequently so high that amplified stimulated emission of the B+X 
transition occurs thereby depleting the gain on the desired OA transition. We capitalized 
on this characteristic in order to demonstrate the feasibility of simultaneous UV/visible 
laser oscillation on both the B+X and OA transitions of the XeF excimer 2 . A cavity opti­ 
mized for laser oscillation at 351 nm and at 480 nm was used. The cavity was comprised of a 
mirror having nearly total reflectivity in the UV and blue-green regions, and a multiple 
coating outcoupler having a transmission of 20% at ~ 350 nm and 10% between 460 and 510 nm. 
Figure 10 presents the measured laser pulse energy densities for the UV and blue-green tran­ 
sitions of XeF as a function of Kr pressure, obtained using this dual wavelength cavity for 
conditions otherwise similar to those described previously. With no Kr in the mixture and 
using a OA cavity alone, previously these conditions resulted in OA laser pulses having an 
energy density of approximately 1 J/liter 1*. However, Figure 10 shows that when the opti­ 
mized dual-wavelength cavity is used, no OA laser oscillation is observed in the absence of 
Kr, but the B+X transition oscillates with an output pulse energy density of ~ 1 J/liter, a 
relatively high energy density level considering that the mixture used is very different 
from that found to be optimum for the XeF(B+X) laser, 6 ' 7 . Addition of Kr results in an 
immediate decrease in B+X output, followed by simultaneous oscillation of the UV and visible 
transitions, and eventually OA oscillation alone for Kr pressures above ~ 300 Torr.

UV absorption

The decrease in B+X laser energy (Figure 10) upon addition of Kr is the result of a 
reduction in the XeF(B) population relative to that of XeF(C) 2 , and, perhaps more signifi­ 
cantly, because of the liklihood of a strong increase in absorption at ~ 351 nm due to the 
presence of Kr 2 F. The Kr 2 F population estimates based on the data of Figures 8 and 9 indi­ 
cate that a Kr partial pressure as low as 50 Torr is likely to result in a very significant 
Kr 2 F contribution to absorption at 351 nm. We feel that this is the primary cause of the 
decrease in XeF(B+X) laser output as Kr is added (Figure 10). This trend continues as Kr 
pressure is increased and for Kr pressures above about 150 Torr, for which the presence of 
Kr results in a reduction in absorption in the blue-green region 2 ' **, significant laser 
output is obtained from the OA transition. For Kr pressure between about 150-250 Torr 
combined UV/visible output in excess of 0.5 J/liter is obtained using the cavity optimized 
at both the B+X and OA wavelengths, corresponding to an intrinsic efficiency of ~ 0.4%. 
However, as the Kr pressure is increased above ~ 300 Torr, for which optimum OA performance 
has been demonstrated 2 ' \ the B+X output decreases to a very low level. For this condi­ 
tion the beneficial influence of Kr on OA laser performance is at its maximum, while the 
peak absorption at 351 nm due to Kr 2 F is estimated 2 on the basis of the Kr* absorption cross 
section to be on the order of 10% cm" 1 . In view of the fact that the cavity used for this 
demonstration was specifically designed to support XeF(B+X) oscillation (Figure 10), we 
interpret these results as strong evidence that the two component Ar-Kr buffer used to opti­ 
mize XeF(OA) laser performance alone, when used with OA optics, significantly reduces the 
possibility of competitive oscillation on the parasitic B+X transition, a particularly 
important consideration for the design of efficient XeF(OA) lasers.
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Summary

The results of this investigation show that the electrically excited XeF(C+A) medium
using a synthesized Ar -Kr buffer has significant potential for development as an efficient
optical source of high brightness that is tunable throughout a large portion of the blue -
green spectral region. Moreover, the unusually high values of extraction energy density and
of intrinsic efficiency that were obtained for an injection wavelength matched to the maxi-
mum gain, suggest that the XeF(C -*A) medium may have the potential to rival its UV rare gas -
halide counterparts for certain selected applications requiring high energy and effi-
ciency.

Although relatively efficient (> 0.1 %) tuning has been demonstrated for wavelengths as
low as 459.4 nm and as high as 505 nm, XeF(C+A) amplifier performance has been limited in
the present investigation by the combination of a short active length (- 10 cm) and undesir-
ably low values of cavity magnification (< 1.3) required to compensate for the former.
However, it is clear that these factors do not represent fundamental limitations. Consider-
ing that the gain of the e-beam excited XeF(C+A) medium is relatively high (> 2% cm-1) over
a 100 nm bandwidth centered at 480 nm, significant improvement in performance should be
forthcoming as a result of pumping geometries which are better suited to optimization of the
laser cavity.
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Summary

The results of this investigation show that the electrically excited XeF(OA) medium 
using a synthesized Ar-Kr buffer has significant potential for development as an efficient 
optical source of high brightness that is tunable throughout a large portion of the blue- 
green spectral region. Moreover , the unusually high values of extraction energy density and 
of intrinsic efficiency that were obtained for an injection wavelength matched to the maxi­ 
mum gain, suggest that the XeF(OA) medium may have the potential to rival its UV rare gas- 
halide counterparts for certain selected applications requiring high energy and effi­ 
ciency.

Although relatively efficient (> 0.1%) tuning has been demonstrated for wavelengths as 
low as 459.4 nm and as high as 505 nm, XeF(OA) amplifier performance has been limited in 
the present investigation by the combination of a short active length (~ 10 cm) and undesir­ 
ably low values of cavity magnification (< 1.3) required to compensate for the former. 
However, it is clear that these factors do not represent fundamental limitations. Consider­ 
ing that the gain of the e_-beam excited XeF(OA) medium is relatively high (> 2% cm" 1 ) over 
a 100 nm bandwidth centered at 480 nm f significant improvement in performance should be 
forthcoming as a result of pumping geometries which are better suited to optimization of the 
laser cavity.
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NF3 and 8 Torr F2 (a), and 6.5 atm Ar, 10
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Figure 2. Temporal relationships of the
dye laser, the e -beam excitation pulse, the
amplified XeF(C-*A) output, and the
broadband XeF(C+A) output with the system
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