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A B S T R A C T

Pilot line manufactured custom quartz tuning forks (QTFs) with a resonance frequency of 28 kHz and a Q value
of> 30, 000 in a vacuum and ∼ 7500 in the air, were designed and produced for trace gas sensing based on
quartz enhanced photoacoustic spectroscopy (QEPAS). The pilot line was able to produce hundreds of low-
frequency custom QTFs with small frequency shift< 10 ppm, benefiting the detecting of molecules with slow
vibrational-translational (V-T) relaxation rates. An Au film with a thickness of 600 nm were deposited on both
sides of QTF to enhance the piezoelectric charge collection efficiency and reduce the environmental electro-
magnetic noise. The laser focus position and modulation depth were optimized. With an integration time of 84 s,
a normalized noise equivalent absorption (NNEA) coefficient of 1.7 × 10−8 cm-1∙W∙Hz-1/2 was achieved which is
∼10 times higher than a commercially available QTF with a resonance frequency of 32 kHz.

1. Introduction

Laser photoacoustic spectroscopy (PAS) for trace gas detection has
been widely investigated and applied in recent decades [1–3]. As a
variation of PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS)
[4–9], is a particularly sensitive gas detection technique capable of
trace gas detection at the parts-per-trillion (ppt) level [10]. Since the
first demonstration of QEPAS in 2002 [4], gas sensors based on QEPAS
have been widely used for environmental monitoring, industrial process
control and clinical diagnostics [11–18]. The significant advantage of
QEPAS is to accumulate the photoacoustic energy in an extremely sharp
resonant quartz tuning fork (QTF), which acts as a piezoelectric
acoustic transducer instead of a conventional microphone [19–23]. The
acoustic wave induced by photoacoustic effect and applied on the prong
of the QTF is converted into electric signal by the piezoelectric effect of
the QTF. The high resonance frequency of 32 kHz and its narrow

bandwidth of ∼ 4 Hz result in a relatively high Q factor and good
environmental acoustic noise immunity when a employing a commer-
cial QTF.

The signal amplitude of the QEPAS is given by equation 1 [24]:

∝S αPQ
f0 (1)

where α, P, f0 are the gas absorption coefficient, the laser power and the
QTF resonance frequency, respectively. To ensure that the molecular
vibration to translation (V-T) relaxation following the laser modulation
frequency, a condition that the molecular relaxation time τ should be
shorter than the modulation period τ≪1/f should be satisfied. Other-
wise this could lead to a signal amplitude reduction or a phase shift of
the photoacoustic signal when using QEPAS to detect molecules with a
slow V-T relaxation [25,26]. For example, in the case of a dry CO2-N2

gas mixture, the relaxation time reached a value of> 100 μs, leading to
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a signal reduction of 60 % if a 32,768 Hz commercial QTF was em-
ployed as the photoacoustic transducer [25]. Until 2013, custom QTFs
with prong spacings of up to 1.5 mm and low resonance frequencies
down to 2.8 kHz were investigated [27,28]. In 2015, QTF with a re-
sonance frequency of 30.72 kHz was used as photoacoustic transducer
to enhance the QEPAS signal amplitude [29]. Most recently, custom
QTFs with optimized geometries for a QEPAS spectrophone was de-
monstrated [30].

Although custom QTFs with different frequencies were employed in
QEPAS most recently, however due to the fineness of the manufacture
technique the designed QTF has different frequency shift. To the best of
our knowledge, it is the first time that pilot line manufactured custom
tuning forks was developed. In this manuscript, high performance
custom quartz tuning fork (QTF) was designed for trace gas sensing
based on quartz enhanced photoacoustic spectroscopy (QEPAS). The
developed custom QTFs have the resonance frequencies down to 28 kHz
while remaining the nearly the same size as the commercial QTF with
the resonance frequency of 32 kHz. Unlike traditional custom QTF, the
developed custom QTF showed the uniform resonance frequency with a
shift< 10 ppm manufactured by a pilot line. An Au film with a thick-
ness of 600 nm are deposited on both sides of QTF to enhance the
piezoelectric charge collection efficiency and reduce the environmental
electromagnetic noise. The QEPAS sensor performance based on the
custom QTF was evaluated by detecting the H2O in the ambient air.
Laser focus position effect to improve the excitation efficiency in the
QEPAS was investigated both theatrically and experimentally. Allan
deviation confirms a good long-term stability of the QEPAS sensor.

2. Sensor design

The custom QTF was etched using microelectronic clean room
techniques from 350 μm thick Z-cut quartz wafers with the QTF prongs
being oriented along the y-axis, see Fig. 1(a). The QTF model was
generated by chemical etching in a hydrogen fluoride solution and then
micro electrodes were protected using shadow masks. Au films with a
thickness of 600 nm are deposited on both sides of the prongs of the
tuning fork using vacuum coating technology to enhance the piezo-
electric charge collection efficiency, see Fig.1 (b). According to the
analytic solution for the flexural vibration resonance given by Ref. 31,
the resonance frequency f0 of QTF can be specified as:

=f πW
l

E
ρ

ν
8 120 2 0

2

(2)

where W, g, T and l were defined in Fig.1(a). The Young modulus E and

density ρ of quartz were 0.72 × 1011 N/m2 and 2650 Kg/m3 respec-
tively. υ0 was 1.194 for the fundamental resonance [31]. The resonance
frequency f and quality factor Q can be obtained from a Lorentz fit of
the QTF resonance curve measured by an electrical circuit. The ob-
tained QTF resonance curve in the air with the pressure of ∼ 747 Torr
was plotted in Fig. 2. The corresponding QTF geometrical parameters
and electrical parameters were shown in Table 1. The resonance fre-
quency and Q factor was measured as 27987 Hz and 7463 respectively.
The resistance R obtained by an equivalent RLC circuit was 220.51 kΩ.
The Q factor can be enhanced in a lower pressure. The resonance fre-
quencies and Q factor of ten custom QTFs encapsulated in a quasi-va-
cuum were measured to evaluate the stability of the pilot line manu-
facturing. The parameters of ten subjects from 100 custom QTFs
manufactured by the pilot line were shown in Table 2. The mean value
of the resonance frequency was calculated as 27.99 kHz which is ap-
proximately equal to the theoretical value of 28 kHz. The standard
deviation of resonance frequency was 0.26 Hz corresponding to a fre-
quency shift of 9.28 ppm. The minor frequency shift can be attributed
to the manufacture technology, electrical circuit and error of Lorentz
fitting. Fig. 3 shows the variations of resonance frequency and Q factor
value of the ten custom QTFs. The obtained mean Q factor values was as
high as ∼34, 000 in a quasi-vacuum. The slight fluctuation in Q factors
comes from the gold film which was deposited by vacuum evaporation.
The heterogeneity of the gold film resulted in the fluctuations in Q
factor. Improvement can be made by using sputtering technology to
form a uniform gold film on the QTF surface.

3. Experimental setup

The schematic diagram of the experimental setup is depicted in
Fig. 4. A custom QTF with a frequency of ∼27.99 kHz and Q factor
value of ∼33,900 in a quasi-vacuum was employed as the acoustic-
electric transducer. The resonance frequency and Q factor value shifted
to 27.98 kHz and ∼7500 in the ambient air, due to the air damping.
The custom QTF has a geometry with a prong length of 3.3 mm and is
∼10 % times smaller in size with respect to a commercial QTF. A
pigtailed distributed feedback (DFB) laser emitting at 1392 nm was

Fig. 1. a) Diagram of the QTF dimension; (b) Photograph of the QTF taken with
an optical microscope.

Fig. 2. Resonance curve of the custom 28 kHz QTF. Lorentz function is used to
fit the data and calculate the frequency and Q factor.

Table 1
QTF geometrical parameters and electrical parameters.

Geometrical Parameters Electrical Parameters

W(mm) g(mm) L(mm) T(mm) f(Hz) Q R(kΩ)
0.4 0.2 3.3 0.35 27987 7463 220.51
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employed to generate the photoacoustic signal. The coarse and fine
tuning of laser emission wavelength can be realized by changing the
temperature of laser diode and injection current of the laser diode. The
2f wavelength modulation technique was applied to the QEPAS to in-
crease its signal-to-noise ratio (SNR). The laser current was sinusoidally
modulated at f/2 of ∼14 kHz by a dual-channel function generator
(Tektronix AFG 3102), where f is the fundamental resonance frequency
of the QTF. The piezoelectric signal generated by the QTF was pre-
amplified by a custom transimpedance amplifier with a feedback re-
sistance of 10 MΩ and then fed to a lock-in amplifier (Stanford SR830
DSP) to demodulate the signal in the second harmonic mode. The time
constant and filter slope of the lock-in amplifier in this experiment was

set to 1 s and 12 dB/Oct respectively. A personal computer (PC)
equipped with a data acquisition (DAQ) card was used to record and
analyze the experimental data. The QTF was placed in an enclosure
filling with air samples. The H2O concentration of 1.3 % was verified by
means of direct absorption spectroscopy as our previous publications
[32]. The experiment was conducted at atmospheric pressure of ∼ 747
Torr and room temperature of ∼25 °C. A H2O absorption line falling at
7194.8 cm−1 with an intensity of 3.07 × 10-21 cm/mol was selected as
the target absorption line.

4. Experimental results

4.1. Laser focusing position effects and modulation depth optimization

In the construction of QEPAS spectrophone, there are focusing po-
sition effects along the QTF prong that must be considered when the
laser focus position varies along the QTF prong [19]. The impact of
laser focus position with respect to QTF on signal amplitude was in-
vestigated. The laser beam was focused between the QTF prongs and
centered on the x axis as shown in Fig. 1(a). The value of h denotes the
distance between the laser focus position and the junction of the QTF
prongs. The position of the optical fiber focuser was adjusted by an XYZ
linear translation stage with a resolution of 0.01 mm. The normalized
QEPAS signal amplitudes obtained by experiment and theoretical ana-
lysis as the function of h are plotted in Fig. 5(a). A position to obtain the
maximum signal amplitude was h = 2.9 mm.

A mathematical model including the generation of sound wave,
motion of the QTF prong and converting the oscillation of QTF prongs
to piezoelectric signals was developed to evaluate the QEPAS sensor
based on the custom QTF. The sound wave pressure P in space and
motion of the QTF prong satisfies the Eqs. (3) and (4) [33]:

∂
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where t is time, c is sound speed, and S is the acoustic source term. E, I,
ρ, A, and u(y, t) are the Young’s modulus of quartz, the second moment
of area, the density of quartz, the cross-sectional area, and the dis-
placement at time t of a point at position y respectively. As a result, the
optimum laser focus position obtained by the numerical method is well
consistent with the experimental results, as shown in Fig. 5(a).

Since a 2f wavelength modulation technique was applied to the

Table 2
Parameters of ten custom QTFs manufactured by the pilot line.

f(Hz) Q R(kΩ)

27997.3 33408 43.69
27997.3 33435 43.73
27997.3 34287 42.4
27997.3 34240 42.24
27997.4 33957 45.15
27997.4 33914 45.05
27997.9 34451 43.5
27997.9 34387 43.54
27997.2 33982 40.82
27997.2 33892 40.91

Fig. 3. Variation of resonance frequency and Q factor of ten custom QTFs.

Fig. 4. Schematic diagram of the QEPAS experimental setup. The double channel function generator produces a ramp signal with a frequency of 10 mHz and a sine
signal with the frequency of 14 kHz to tune and modulate the DFB laser, respectively. PM: power meter, PC: personal computer.
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QEPAS, the optimum laser modulation depth must be characterized for
a custom QTF. The laser temperature was fixed at 17.5 °C and the laser
injection current was varied from 40 mA to 60 mA in steps of 0.1 mA to
cover the selected H2O absorption line. The modulation depth was
changed from 5 mA to 20 mA to obtain the maximum 2f QEPAS signal
amplitude. The experimental result in Fig. 5(b) shows that the signal
amplitudes increase monotonically with the laser modulation depth
from 5 mA to 18 mA, whereas when the modulation depth was larger
than 13 mA the QEPAS signal amplitudes increase less than 3 %. The 2f
signal amplitudes then start to decrease when the modulation depth is
larger than 18 mA, indicating that the optimum modulation depth was
13 mA. Two groups of experimental results show a consistent result.

4.2. QEPAS signal evaluation

The performance of the QEPAS sensor based on a custom QTF was
evaluated by the detection of H2O in ambient air in a constant en-
vironmental temperature and humidity laboratory. With the laser in-
jection current tuning from 15 mA to 60 mA, the obtained QEPAS 2f
signal and associated noise were plotted in Fig. 6. The 2f signal and
noise were obtained for the condition of optimum laser focus position
and modulation depth of 13 mA. The signal peak of the QEPAS 2f signal
was 3.82 × 10−4 V. A 1σ noise of 7.8 × 10-7 V was calculated from the
standard deviation of the QEPAS signal when the laser emission wa-
velength was far from the H2O absorption line. As a result, the detection
signal to noise ratio was calculated to be ∼490. This low 1σ noise can
be attributed to the good anti-electromagnetic disturbance ability of the
Au film deposited on the QTF surface.

4.3. Sensor long-term stability

The Allan deviation is the square root of Allan variance, which is
also known as two-sample variance, is a measure of frequency stability
of devices and instruments. The Allan deviation analysis allows the
determination of how long optical sensor signals can be averaged to
increase the detection sensitivity, and before noise sources like laser
instability, temperature, and mechanical drifts, as well as when moving
fringes begin to dominate [45]. To assess the long-term stability, the
laser emission wavelength was tuned away from the H2O absorption by
adjusting the laser to T = 17.5 °C and I = 15 mA, respectively. The
lock-in amplifier continuously recorded the data from the QEPAS sensor
with an integration time of 1 s and slope of 12 dB/octave. An Allan
deviation analysis was carried out as depicted in Fig. 7. The white noise
remains the dominant noise source until 84 s. After that, the instru-
mental drift started to dominate. With an integration time of 84 s, a
SNR of 2042 was achieved, corresponding to a NNEA of 1.7 × 10−8 cm-

1∙W∙Hz-1/2.

5. Discussions

For a side by side comparison, the results obtained by several QTFs
were demonstrated in Table 3. According to the Eq. (1), the signal
amplitude of the QEPAS sensor is proportional to the gas absorption
coefficient α, the laser power P, and inversely proportional to the QTF
resonance frequency f0, respectively. The gas absorption coefficient α

Fig. 5. (a) Optimization of the laser focus position. The red dots, red circles and black solid lines represent the experimental group 1, experimental group 2 and
numerical results, respectively. (b) Optimization of the laser modulation depth in the QEPAS based on a 28 kHz custom QTF. The red dots and circles represent
experimental group 1 and experimental group 2, respectively.

Fig. 6. (a) QEPAS 2f signal of H2O detected in laboratory ambient air; (b) Noise
obtained at the laser wavelength beyond the H2O absorption line.

Fig. 7. The obtained Allan deviation when the laser emission wavelength was
tuned away from the H2O absorption.
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was determined by the laser wavelength which resonates with the ro-
tational and vibrational energy levels of the molecules. Laser sources
with larger power, targeting a strong absorption line, will result in
better a detection limit. Resonant enhancement method, including
overtone resonance [28,41], single-tube on-beam configuration
[28,41], on-beam configuration [39,40] and off-beam configuration
[42] offers an enhancement factor of dozens of times or more. With the
purpose of evaluating the performance of the proposed QTF, no re-
sonant enhancement was employed in the QEPAS sensor. After
checking the laser diodes in stock, a laser diode with the wavelength of
1392 nm and the power of 5 mW was used to target a H2O absorption
line of 3.07 × 10−21 cm/mol. Even a lower power and weaker ab-
sorption, the detection limit of this this work was comparable to the
commercial QTFs and other custom QTFs. For the improvement, an on-
beam and single-tube on-beam configuration can be used to improve
the detection limit by 30 times [43] and>100 times [21], respectively.

6. Conclusions

From 2014, a series of research on QEPAS by using of different
custom QTF were demonstrated [26–28,34–37]. Detailed experimental
and theoretical analysis on the influences of the custom QTFs including
the quality factor Q, the resonance frequency, the fork stiffness, the
spring constant, and the electrical resistance were reported. However,
the uniform in frequency of the custom QTF is never reported. Although
the frequency shift can be compensated by a lock-in amplifier in the
laboratory. For an efficient harmonic demodulation by using of a cost-
effective lock-in module, the resonance frequencies of the QTF should
be uniform with a small discrepancy in a given frequency range. The
proposed custom QTF can also benefit the novel QEPAS spectrophone
such as multi-quartz-enhanced photoacoustic spectroscopy [46] and the
optical chopper based on QTFs [47], where the uniform resonance
frequency of multi QTFs was required. In this work, we demonstrated
the realization of a QEPAS gas sensing using pilot line manufactured
custom QTFs for the first time. Ten custom QTFs as mechanical oscil-
lators were characterized by the resonance frequency of ∼28 kHz with
a shift of less than 10 ppm. The Q factor obtained by such custom QTFs
were∼34, 000 in a quasi-vacuum and∼ 7500 in the air. A small gap of
∼200 μm benefited a higher acoustic wave pressure on the QTF prongs
in the QEPAS. The electrodes, made of an Au film with a thickness of
600 nm, are deposited on both sides of the prongs of the tuning fork to
increase the collection efficiency of the piezoelectric charge. The op-
timum laser focus position was found to be 0.4 mm away from the QTF
opening, which is consistent with the theoretical value. The laser
modulation depth was optimized to increase the QEPAS signal ampli-
tude by ∼2.3 times. An Allan deviation of the QEPAS sensor perfor-
mance based on the custom QTF was evaluated by tuning the laser
wavelength away from the H2O absorption line. With an integration
time of ∼ 84 s, a detection limit of 6.3 ppm was achieved for H2O,
corresponding to a normalized noise equivalent absorption (NNEA)
coefficient of 1.7 × 10−8 cm-1∙W∙Hz-1/2 in the case of a bare QTF
without acoustic resonators. The achieved NNEA is 10 times better than
that of a commercial standard QTFs. Such custom QTF with a 12.5 %
lower resonance frequency and a smaller prong spacing benefit the

photoacoustic detection of molecules with a low V-T relaxation rate
such as CO2 and NO2. The performance of the custom tuning fork can be
further enhanced by use of acoustic resonators in on-beam or off-beam
configuration. The on-beam configuration can provide a ∼30 times
enhancement in sensitivity by the strong coupling effect between the
QTF and the two resonator tubes [43]. The off-beam configuration will
benefit the using of laser sources with poor beam quality such quantum
cascade lasers and light-emitting diodes [44]. In this work, benefiting
from the performance of the custom QTF, only a bare QTF was em-
ployed as the QEPAS spectrophone, simplify the sensor structure and
enhance the robustness. The pilot line manufactured custom QTFs with
lower resonance frequencies and higher Q factors shows the opportu-
nity on the mass production of QEPAS instruments based on custom
QTFs. Next step is to develop cost-effective custom tuning forks with a
resonance frequency ∼ 10 kHz or less by pilot lines. Not only for
quartz-enhanced photoacoustic spectroscopy, another important ap-
plication of the developed QTF is the atomic force microscope (AFM) in
which the uniformity on resonance frequencies is of significant im-
portance [38]. Considering the piezoelectric effect in quartz crystal is
not so strong, further improvement can be made by using of traditional
piezoelectric materials such as lead zirconate titanate (PZT), barium
titanate (BaTiO3). The custom tuning fork with piezoelectric coeffi-
cients hundreds of times higher than the quartz can be expected to
achieve the unprecedented gas detection limit.
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Table 3
Side by side comparison of QEPAS sensor based on different QTFs for H2O detection. Overtone: overtone enhancement; sing-tube: single-tube on-beam configuration;
f: QTF resonance frequency; λ: laser wavelength; P: laser power; α: absorption line intensity; D: detection limit; Ref: reference.

Resonant Enhancement f0 (kHz) λ (nm) P (mW) α (cm/mol) D (ppm) Ref

Overtone + Single-tube 25.4 7713 108 1.70 × 10−22 4.59 [28]
Overtone + Single-tube 17.7 1370 23 8.06 × 10−22 4.3 [41]
On-beam configuration 30.7 1395 30 1.17 × 10−20 4.3 [40]
On-beam configuration 32.7 1395 \ \ 5.73 [39]
Off-beam configuration 32.7 1396 8 1.17 × 10−20 9.27 [42]
None 28 1392 5 3.07 × 10−21 6.3 This work
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results.
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